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Foreword

Protein-energy malnutrition (PEM) remains a public health concern in most developing nations. 
A number of policy frameworks stress the urgent need to increase public and private investments 
in agriculture and boost production and productivity while making diets more nutritious and food 
systems more resilient. For instance, FAO’s vision is that of “a world free from hunger and malnutrition, 
where food and agriculture contribute to improving the living standards of all, especially the poorest, 
in an economically, socially and environmentally sustainable manner”. This ambitious agenda is 
aligned with the Sustainable Development Goals (SDGs) as well as the commitment African Heads 
of State and Government made at Malabo, Equatorial Guinea (Malabo Declaration) to transform 
the continent’s agriculture and food systems as captured in the Comprehensive Africa Agriculture 
Development Programme (CAADP). 

The UN General Assembly declared 2013 as the ‘International Year of Quinoa’ with the aim 
of raising awareness of how this grain crop can provide nutrition, increase food security and help 
eradicate poverty around the world. Quinoa can be cultivated from sea level up to 4 000 metres above 
sea level and from arid regions to wet environments. Quinoa grain is consumed as a cereal, with its 
protein containing a well-balanced complement of all essential amino acids, a property that makes it 
superior to grains of other food crop species such as wheat, barley and soybean. The grain is also rich 
in mineral nutrient content of calcium, iron, magnesium, potassium, phosphorus, zinc and manganese. 
As quinoa is gluten-free, it can be safely eaten by those with gluten allergies.

With many African countries struggling to achieve food and nutrition security, there is the felt need to 
harness the unique qualities of quinoa to combat malnutrition and cope with abiotic stresses associated 
with climate change. However, the introduction of quinoa to a new society requires technological, 
institutional and policy considerations to facilitate and enable adoption and utilization of the crop. 
The International Year of Quinoa was in recognition of the indigenous peoples of the Andes, who 
have traditionally preserved quinoa as a food thanks to their longstanding knowledge and cultivation 
practices. The protein content of quinoa grain ranges from 12 to 17 percent and is reported to vary with 
factors such as cultivar, soil fertility and environment. The mineral nutrient content is also expected to 
vary with soil nutrient status. It is therefore necessary to study crop adaptation, nutrient composition 
and utilization when quinoa is introduced to new environments. Within the framework of FAO’s 
commemoration of 2013 as the ‘International Year of Quinoa’, a Technical Cooperation Programme 
(TCP) project was developed involving six Eastern African countries (Djibouti, Ethiopia, Kenya, 
Somalia, South Sudan, Uganda) and Zambia to assess the capacity of quinoa to adapt to different 
agro-ecological regions and the nutritional quality of the resulting grain. 

This technical paper begins with an introduction to quinoa and its potential for food security and 
export diversification in Africa. It explains the background to the TCP project and the country-specific 
initiatives that took place in Ethiopia, Kenya and Malawi prior to the initiation of the TCP. This is 
followed by a description of FAO’s approach to the introduction and evaluation of quinoa under 
diverse farming systems and agro-ecological regions in Eastern and Southern Africa. A synthesis of the 
methodology applied in the adaptability studies is presented as well as the results, successes, challenges 
and lessons learned. Also, the findings of an evaluation of the protein content and amino acid profile 
of three genotypes of quinoa grown under different agro-ecological conditions in Ethiopia, Kenya, 
Uganda and Zambia are presented. Recommendations are made from technological, institutional and 
policy perspectives regarding what countries can do to advance the introduction, production and 
utilization of quinoa in Eastern and Southern Africa.
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The development of the technical paper was a highly collaborative effort among technical experts 
at the FAO Subregional Office for Eastern Africa, the Ministries of Agriculture and agricultural 
research institutions of the seven project-implementing countries, as well as the International Center 
for Tropical Agriculture (CIAT) and the French Agricultural Research Centre for International 
Development (CIRAD). The technical review of the paper was undertaken by the quinoa expert of 
the Plant Production and Protection Division at FAO Rome.
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Executive summary

Quinoa (Chenopodium quinoa Willd.) is an emerging crop around the globe, with great potential to 
contribute to Africa’s food and nutrition security. Its important gain in popularity over the last seven 
years is attributed to the impact of activities carried out within the framework of the International 
Year of Quinoa (IYQ2013), which significantly raised awareness of the crop’s multiple nutritional 
benefits and its growing global cultivation. 

The Food and Agriculture Organization of the United Nations (FAO) championed the IYQ2013 
since the first solicitation of Bolivia. FAO is working with developing countries outside the Andean 
region that are struggling to meet food and nutrition security goals to introduce and promote the 
cultivation of quinoa. Production and utilization of quinoa are expected to reduce food and nutrition 
insecurity in a significant way and help farming communities adapt to climate change impacts. 
Among the FAO’s quinoa-related activities are those of the Technical Cooperation Programme (TCP) 
project – “Technical assistance for the strengthening of the food system of quinoa” (TCP/SFE/3406) 
– implemented in the period 2014 to 2015. This project was designed to support the institutional 
capacities of seven countries (Djibouti, Ethiopia, Kenya, Somalia, South Sudan, Uganda and Zambia) 
in the production, evaluation, management, utilization and marketing of quinoa under diverse farming 
systems and agro-ecological zones. The project was implemented and led by the FAO Subregional 
Office for Eastern Africa (SFE). Quinoa evaluation trials conducted across multiple sites in the 
participating countries served as pilot adaptability studies for the crop in Eastern Africa and Zambia. 
The project also drew experience from quinoa introductions and adaptability studies previously 
conducted through bilateral collaborative projects in Ethiopia, Kenya and Malawi. A synthesis of 
the results showed that the following technological, institutional and policy considerations need to 
be made to facilitate the introduction and adoption of quinoa in farming communities of different 
agro-ecological areas in Africa:

1)  Varieties (or genotypes) evaluated vary in their plant-growth and grain-yield performance 
across different environments in the region. Therefore, for quinoa production to be possible 
across different ecological zones, varieties adapted to specific ecological regions or zones need 
to be selected locally and for local farming systems. Quinoa yields as high as or even higher 
(one to five tonnes per hectare) than those realized in traditional production areas of quinoa are 
possible. There are also some genotypes whose protein content and quality (balance of amino 
acids) vary with soil nutrient status across environments.

     There is a need for further testing of the varieties in the seven countries as data generated so 
far are from a single season with the exception of Malawi (where seven varieties were released 
in 2017 for use by farmers) and Ethiopia (where quinoa genotypes have been evaluated for more 
than one season and one variety has been released). Several gaps in seed quality, pathology, 
physiology, agronomy and genetics remain for the researchers to understand quinoa as a potential 
crop for introduction into the African food systems. Expertise needs to be engaged to address all 
these research gaps as multilocational trials are extended to include more agro-ecological zones. 
There is a need for capacity building of both scientists and technicians in quinoa crop research, 
which can either take the form of short training courses or visits to countries more experienced 
in quinoa research in the region or to the Andean countries. Support for undergraduate and 
postgraduate research on quinoa crop agronomy and utilization needs to be included to promote 
sustainability of the quinoa ‘revolution’ in Africa.

2)  Low seed viability constrained plant establishment in all sites of the evaluation trials under the 
FAO–TCP project. Seed quality will therefore be a key factor for successful adaptation trials 
of quinoa as well as for promotion of the crop.

    xi



     A seed system for quinoa needs to be developed (certification and standards) focusing on seed 
multiplication and maintenance of varieties to support the efforts of quinoa introduction and 
promotion. The seed system also needs to be aligned with national selection and plant breeding 
requirements for the development of local varieties. 

3)  The adaptation trials that have been conducted in the past, such as those in Ethiopia, Kenya and 
Malawi as well as the FAO–TCP project, have created a ‘start up’ capacity to drive the introduction 
and promotion of quinoa on the African continent. The researchers who were engaged in the 
trials represent the human capacity that has been built – they are now knowledgeable and have 
gained basic experience in quinoa growing.

     The consortium that was created in quinoa research needs to take advantage of the experience 
acquired and momentum gained to develop a regional quinoa project that will help countries 
accelerate the commercialization of quinoa, which may be slow with individual country efforts. 

4)  National agricultural research institutes (NARIs) that conducted the quinoa evaluation trials 
have a network of research infrastructure across agro-ecological zones in most of the countries, 
making them well-positioned for the introduction, testing and promotion of quinoa. Agricultural 
universities played an important role to introduce quinoa and conduct adaptability and on-farm 
studies. Certain non-governmental organizations that are working with farming communities 
as well as with women on nutritional programmes have emerged as effective partners in the 
promotion of quinoa production and its utilization, as in the case of Total Land Care (TLC) 
and the Lilongwe University of Agriculture and Natural Resources (LUANAR) in Malawi. 
Such partnerships facilitated on-farm trials of introduced quinoa varieties conducted across 
different agro-ecological zones, leading to approval by the Agricultural Technology Clearing 
Committee (ATCC) and the release of seven varieties in Malawi in August 2017.

     Where possible, the current NARIs should continue leading quinoa research and promotion in 
their countries and capitalizing on the existing network with international research institutions, 
non-governmental organizations (NGOs) and farmer organizations as well as with the private 
sector to promote production and utilization of quinoa. A multi-disciplinary and multi-
institutional team of researchers is likely to accelerate adoption of the new crop. The Consultative 
Group on International Agricultural Research (CGIAR), in this case the International Center 
for Tropical Agriculture (CIAT), was fundamental in supporting FAO in coordinating the 
regional project based on its successful track record in coordinating research partnerships, a 
good example being the Pan Africa Bean Research Alliance (PABRA) that comprises 31 NARIs 
and over 350 other partners that contribute to different components of the common bean value 
chain.

 
5)  Awareness creation initiated among technocrats, policy-makers and the public needs to continue 

to promote quinoa as a healthy food crop with high potential to contribute to food and nutrition 
security in the countries that participated in the project.

     Cross-cutting issues such as gender and HIV/AIDS need to be included in project activities 
promoting quinoa utilization. In many African societies, food insecurity is generally localized 
in social groups and aggravated by gender inequalities that disadvantage specific sections of the 
population such as women and children.
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6)  A regional approach of introducing quinoa crop (thus acquisition of germplasm from Peru 
through the FAO regional office, characterization of testing sites, experimental design and 
analyses and nutrient analysis of seed samples grown from the testing sites) was effective as 
it provided a platform for sharing information and experience that would not otherwise have 
been possible. Individual countries had to adapt their season of planting/sowing according to 
the rainy season as this varied from country to country.

     The regional quinoa research network championed by FAO needs to continue to serve as 
a platform for the exchange of information and discussion among various stakeholders in the 
region.

7) Engagement of stakeholder institutions in the early stages of introducing quinoa crop increased 
awareness in most of the participating countries in Eastern Africa and Malawi. Farmers in Malawi 
appreciated the importance of quinoa grain and explored the use of the leaves as a vegetable.

8)  In many countries, agricultural research and production policies emphasize or are biased towards 
a few major cereal and legume crops (such as maize and common bean) for food security, while 
many indigenous food crops (neglected and underutilized species) that have played an important 
nutritional security role in the farming households in past centuries have been neglected by 
research and extension. Introduction of quinoa at national levels should be done in full recognition 
of its unique nutritional contribution, thus ensuring that it doesn’t suffer the same fate as the 
neglected and underutilized crop species.

    National agricultural research and production policies need to envisage funding for promotion 
of emerging crops like quinoa to meet specific domestic and export market needs.
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1. Introduction

1.1 Quinoa’s potential for food security in Africa

Quinoa (Chenopodium quinoa Willd.) is an emerging crop around the globe, with great potential 
to contribute to Africa’s food and nutrition security (Ruiz et al., 2014). Quinoa grain has been a 
source of nourishment for people of the Andean region in South America for about 7 000 years since 
its domestication (Pearsall, 1992). Selection and maintenance of quinoa cultivars over the millennia 
by generations of farmers in the region has led to the development of cultivars adapted to diverse 
environments of the Andean region. These farmers contributed to the high genetic diversity of the 
crop that enables the selection of new quinoa genotypes for introduction and adaptation to other 
environments. Today there is a high probability of selecting better-performing quinoa genotypes for 
introduction to most environments around the globe. 

Quinoa survived the neglect that came with the  Spanish conquest and introduction of ‘Old World’ 
food crop species in the Andean region until the second half of the 20th century, when the nutritional 
status of quinoa was rediscovered, leading to a renaissance in its production (Bazile and Baudron, 
2015; Repo-Carrasco et al., 2003). Since the rediscovery, research into the possibility of producing 
quinoa across the globe has increased exponentially (Bazile et al., 2016).

With many of the African countries struggling to achieve their food and nutrition security goals, 
the possibility of introducing quinoa as a food crop on the continent has been considered to cope with 
abiotic stresses associated with climate change impacts and to combat malnutrition. Quinoa can be 
cultivated from sea level up to 4 000 metres above sea level and from arid regions to wet environments 
(Delatorre-Herrera and Pinto, 2009; Fuentes et al., 2012; Orsini et al., 2011; Ruiz-Carrasco et al., 
2011; Pulvento et al., 2012).

Quinoa grain is consumed as a cereal, with its protein containing a well-balanced complement 
of all essential amino acids, a property that makes it superior to grains of other food crop species 
such as wheat, barley and soybean (Repo-Carrasco et al., 2003; Risi , 1993). The grain is also rich in 
mineral nutrient content of calcium, iron, magnesium, potassium, phosphorus, zinc and manganese. 
As quinoa is gluten-free, it can be safely eaten by those with gluten allergies (Zevallos et al., 2015 ). 
The protein content of quinoa grain ranges from 12 to 17 percent and is reported to vary with factors 
such as cultivar, soil fertility and environment (Rojas et al., 2015). The mineral nutrient content is also 
expected to vary with soil nutrient status. It is therefore necessary to study plant growth adaptation, 
nutrient composition and utilization when quinoa is introduced to new environments. 

1.2 Diversification of export crops

There is a growing demand for quinoa grain in developed countries (Bazile, Bertero and Nieto, 2015) 
and among the affluent and the expanding middle class in developing countries (Bazile et al., 2015; 
Maliro and Guwela, 2015; Jacobsen, 2003). Quinoa, therefore, is a potential crop to add to the diversity 
of cash crops in the African economies so that it can contribute to improving the socio-economic status 
of small-scale farmers in the region (Coulibaly et al., 2015). Many developing countries in Africa, like 
Malawi, have for many years depended on tobacco as a main export crop and forex earner. However, 
the decline in global demand for tobacco (FAO, 2003) has seen the economies of such countries nearly 
collapsing, sending them on a quest to diversify their export crop base by promoting the production 
of legumes and pulses. The global demand for quinoa presents another export opportunity to such 
countries.

    1
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2. Background

The introduction of quinoa to a new society requires technological, institutional and policy considerations 
that enable and facilitate acceptance and utilization of the crop. While quinoa is known to have a wide 
climatic adaptation and superior nutrient composition, this does not guarantee successful production 
and utilization. The eastern and southern Africa region has a high climatic and geographic diversity 
ranging from dry to wet and warm to cool ecological zones, low to high altitude and with varied soil 
types and soil fertility. 

Institutional structures and linkages vary from country to country and are at different stages due 
to variation in governance and political stability, such that delivery of agricultural technologies to 
the farming communities also face different challenges. Policies on agriculture are at different levels 
of development among the countries in East and Southern Africa. These variations were revealed in 
findings from early adaptability studies of quinoa. This paper synthesizes the methodologies applied in 
the adaptability pilot experiments, results, successes, challenges and lessons learned. Recommendations 
are made about what countries with support from the development partner organizations can do to 
advance the introduction, production and utilization of quinoa into the food systems of the region.
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Figure 1:  Map of Africa 
Source: Elaborated by the authors.  Conforms to Map No. 4045 Rev. 8.1 United Nations, 2018.
(Site: https://www.un.org/geospatial/mapsgeo)

3. Country-specific initiatives on quinoa 
(adaptability studies)

Technological considerations for the introduction of quinoa to East and Southern African countries 
concentrated on evaluating and selecting germplasm with better agronomic performance in various 
environments and to some extent on utilization. Early (before 2013) adaptability studies in the sub-
Saharan region were conducted in Ethiopia, Kenya, Malawi and Mali (Jacobsen, 2003; Oyoo et al., 
2010; Maliro and Guwela, 2015, Maliro et al., 2017). Later studies (Bazile et al., 2016) were conducted 
under three TCPs concerning quinoa in Africa – North Africa (in an FAO Regional Office for the 
Near East and North Africa project), West Africa with Ghana coordination (Ghana and Mali) and 
East Africa with SFE (in seven countries) through an FAO initiative after 2013 was declared the 
International Year of Quinoa (IYQ) by FAO and the UN, and FAO was requested to champion 
technical assistance to countries in sub-Saharan Africa in the introduction of the crop. FAO, through 
its Subregional Office for Eastern Africa, initiated a TCP project titled ‘Technical assistance for the 
strengthening of the food system of quinoa’ (TCP/SFE/3406) to support the institutional capacities 
of beneficiary countries in the production, evaluation, management, utilization and marketing of 
quinoa under diverse farming systems and in diversified agro-ecological regions. The participating 
countries included Djibouti, Ethiopia, Kenya, Somalia, South Sudan, Uganda and Zambia (Figure 1). 
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3.1 Kenya

Kenya has six ecoclimatic zones that were classified based on climatic, vegetative and soil characteristics. 
These include Zone I, Afro-Alpine moorland and grassland, found at high altitudes (2 350 m.a.s.l) 
above the forest line; Zone II, humid to dry subhumid climate; Zone III, dry subhumid to semi-arid 
climate; Zone IV, semi-arid climate; Zone V, arid climate; and Zone VI, very arid climate (Figure 2 
shows the ecozones based on precipitation). Zones IV to VI account for 72 percent of Kenya’s total 
land area and are usually referred to as the arid and semi-arid lands (ASALs) of Kenya (Ojany and 
Ogendo, 1988). Rainfall in the ASALs is sparse and highly variable and therefore crop production is 
not assured (Khaemba, 2015). Introduction of quinoa would therefore require acquisition of germplasm 
materials that are diversely adapted to similar environments. 

The crop was not introduced systematically to Kenya, such that detailed follow-up trials have not 
been possible. Available literature shows that quinoa was first evaluated in Kenya between 1935 and 
1939 to test the adaptability of the crop to the local environments. Cream-coloured seeds of quinoa 
were obtained from the Royal Botanic Gardens and tested in different sites including Kitale (Zone II, 
at 1 828 m.a.s.l), Kapenguria (Zone IV, at 2 134 m.a.s.l), Kiambu (Zone II, at 2 438 m.a.s.l) and Scott 
Agricultural Laboratories (Zone II, at 1 737 m.a.s.l) (Elmer, 1942) (Figure 2). Results from these studies 
showed that unlike other cereal crops such as maize, quinoa did not necessarily require fertile soils, 
hence it grew well in marginal soils. Results showed that the crop was able to grow in areas higher 
than 1 829 m.a.s.l, with rainfall that ranged from 381 to 635 mm during the growing season, and that 
the crop matured within 4.5 to 6 months. However, no follow-up studies or record of germplasm 
conserved from such studies can be traced. 

Figure 2: Map of Kenya showing agro-ecological zones and locations where early quinoa trials 
were conducted.  
Adapted from figure 1b of Macharia, M., Ngetich, F.K. and Shisanya, C.A. 2020. Comparison of satellite remote sensing 
derived precipitation estimates and observed data in Kenya. Agricultural and Forest Meteorology, Volume 284 (2020), 107875. 
Elsevier B.V., https://doi.org/10.1016/j.agrformet.2019.107875.  Accessed from Comparison of satellite remote sensing derived 
precipitation estimates and observed data in Kenya (ku.ac.ke)
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Table 1: Quinoa genotypes used in the 1999–2000 trial in Kenya (Oyoo et al., 2010)

Country of origin Number of genotypes 
sourced

Names/accession names of genotypes

Peru 8 CICA-127, CICA-17, Huariponcho, Kancolla, 03-21-079BB, 
03-21-072RM, IIIpa, Salcedo

Bolivia 4 Ratuqui, Kamiri, Real, Sayana 

England 2 RU-2, RU-5  

Holland 1 NL-6 

Denmark 2 E-DK-4, G-205-95

Ecuador 2 Ingapirca, ECU-420

Chile 2 Canchones, Baer

Colombia 1 Narino

Argentina 1 Jujuy

Brazil 1 Embrapa

Total 24

The next quinoa study was conducted in 1999–2000 when the performance of 24 quinoa genotypes 
(Table 1) was assessed (Bertero et al., 2004; Oyoo et al., 2010). The objective was to determine 
adaptability and yield performance of quinoa under Kenyan conditions and as part of an international 
multi-environment trial (Bertero et al., 2004). The genotypes were sourced from Argentina, Bolivia, 
Brazil, Chile, Colombia, Denmark, Ecuador, Peru and the Netherlands through the International Potato 
Center (CIP) in Nairobi. The studies were conducted at the Kabete Field Station of the University of 
Nairobi (Figure 2), located at an altitude of 1 820 m.a.s.l with a temperature range of 13–23 °C and 
an annual rainfall of 970 mm. 

These studies provided more elaborate information showing growth period of the quinoa genotypes 
that ranged from 65 to 98 days in 1999 and 72 to 123 days in 2000. Crop growth durations were 
shorter than those reported from the Andean region, which ranged from 110 to 190 days (Jacobsen 
and Stølen, 1993). The highest yields per plant for the two seasons were obtained from Cv. Narino 
(26.5 g and 11.8 g per plant) and the second highest yielding genotype was CICA-17, which gave 25.7 
g and 9.2 g in 1999 and 2000, respectively. The late-maturing varieties grew taller, accumulated more 
biomass and consequently resulted in high seed yields. The overall grain yields of the cultivars for 
the two seasons ranged from 1.583 to 2.097 t/ha, which were comparable with yield obtained from 
the native quinoa-growing regions. The study identified Narino, CICA-127, CICA-17 and ECU-420 
as superior cultivars in terms of biomass production and seed yield because they yielded as much as 
4 t/ha. The study also indicated that adaptability and yield stability studies across several Kenyan 
environments could be useful in order to recommend different quinoa genotypes for cultivation in 
different agro-ecological zones.

While there had been additional studies on the use of other rotational crops to suppress root 
nematodes (Kimenju et al., 2008), the promising genotypes evaluated were not picked up for direct 
release to farmers or for use in further breeding work. The status of the germplasm of these early 
genotypes is not known but could perhaps be found in the national gene bank. This could be attributed 
to a lack of coordinated research that takes all stakeholders on board. There is a need to raise awareness 
of the benefits of quinoa and its potential for marginal environments, and for coordinated research 
in various disciplines including physiology, breeding and agronomy to stimulate the spread and 
adoption of quinoa. A value chain approach would be a better option once the suitable varieties have 
been released. Unlike the approach of focusing exclusively on the production level, the value chain 
approach employs more holistic agribusiness strategies of considering the sequence of key activities 
and their supporting economic activities at the various levels of the chain (Rillo and Nugroho, 2016), 
such as availability of production inputs, production and processing of the produce, marketing and 
distribution of the produce and its products. This approach would therefore link quinoa production 
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with the food-processing industry and services sectors of the economy along the supply-value chain 
and market network. The approach is likely to allow production that is aligned with demand as 
awareness of the benefits of quinoa grows and to avoid oversupply that can negate farmers’ interest 
in adopting this new crop into their farming system. 

On the other hand, although quinoa is not currently grown in Kenya, some quinoa products are 
found in major supermarkets in large towns and cities, imported mainly from Europe and the Andean 
region whose main customers are the affluent. To promote its utilization by local populations, the crop 
needs to be produced locally as well. A legal framework and the necessary institutions exist in Kenya 
to regulate plant genetic material for sustainable management and utilization of genetic resources 
for the benefit of the people. These include the Kenya Plant Health Inspection Service (KEPHIS), 
National Environmental Monitoring Authority (NEMA) through the Environmental Management and 
Coordination Act (Conservation of Biological Diversity and Resources, Access to Genetic Resources 
and Benefit Sharing) and the National Council for Science and Technology (NCST).

3.2 Malawi

3.2.1 Agronomic studies

The objective of quinoa adaptation studies in Malawi was to introduce and evaluate diverse quinoa 
genotypes for plant-growth and grain-yield performance in two contrasting environments. Thirteen 
quinoa varieties were introduced in Malawi in 2012 through a collaborative research project involving 
Lilongwe University of Agriculture and Natural Resources (LUANAR) and Washington State 
University (WSU). The genotypes originated from South American countries (but were obtained 
from ex-situ collections in the United States of America [USA]). Some genotypes had been bred in 
the USA and Denmark (Table 2). Seeds were supplied to LUANAR by the WSU. 

The quinoa genotypes were evaluated under different Malawi environments and conditions in 
three stages: (i) preliminary evaluation of the genotypes conducted under irrigated conditions at two 
sites, Bunda and Bembeke; (ii) evaluation of the genotypes under rainfed conditions at one location, 
Bunda; and (iii) evaluation of the genotypes in six environments in four districts – Dowa, Ntchisi, 
Nkhotakota and Salima (Figure 4 and Table 3). 

The preliminary evaluation (Maliro et al., 2017) was limited to two sites (research stations) to allow 
researchers to get acquainted with the crop, monitor its growth and observe if there would be any pests 
and diseases that would significantly affect its growth and yield performance. The trials evaluated 
11 of the 13 genotypes (G1 to G11 which had enough seed) laid out in replicated experiments at the 
Bunda Campus of LUANAR and at Bembeke Agricultural Research Substation in Dedza district. 
The Bunda Campus is located at 14° 12’ S and 33° 46’ E, 1 200 metres above sea level (m.a.s.l), receives 
1 030 mm/year of rainfall, and with a mean temperature of 20 °C).  Bembeke Agricultural Research 
Substation is located at 14° 35’ S and 34° 43’ E, at 1 600 m.a.s.l., receives 1 500 mm/year of rainfall 
and with a mean temperature of 15 °C). The Bunda site represented a relatively warm environment 
while Bembeke represented the relatively cool environment of central Malawi. The experiments 
were conducted from July to mid-October in 2012, under irrigated conditions (Maliro et al., 2017, 
Kathabwalika et al., 2013).
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Figure 3: Map showing quinoa’s adaptability experimental sites in Malawi during the 2014–2016 
experimental periods 
(Source: Adapted from Malawi free map, free blank map, free outline map, free base map boundaries, districts, names (d-maps.com) 
and modified by Maliro, M.F.A., Muhota, P.T., Leong, R., Museka, R. and Jere, Z. (Unpublished, 2017). Lilongwe University 
of Agriculture and Natural Resources, Lilongwe, Malawi. Map prepared for a presentation on the proposal to release six 
varieties of quinoa (Chenopodium quinoa Willd) for production in Malawi, presented to the Agricultural Technology Clearing 
Committee of the Ministry of Agriculture, Lilongwe, Malawi.   

Table 2: List of quinoa genotypes introduced and evaluated for adaptability in six different 
environments of central Malawi

Genotype Origin Notes

1 G1 Black-seeded Colorado, US Developed from a cross between Chenopodium 
quinoa and Chenopodium berlandieri; very tall 
variety (>2 m tall)

2 G2 Brightest Brilliant 
Rainbow

Oregon, US Bred by Frank Morton of Wild Garden Seeds

3 G3 Bio-Bio Chile

4 G4 Cherry Vanilla Oregon, US Bred by Frank Morton of Wild Garden Seeds

5 G5 Multi-Hued British Columbia, 
Canada

6 G6 Red Head Oregon, US Bred by Frank Morton of Wild Garden Seeds

7 G7 QQ74 Chile Heat-tolerant Chilean landrace

8 G8 Puno Denmark Bred by Sven-Erik Jacobsen

9 G9 Titicaca Denmark Bred by Sven-Erik Jacobsen

10 G10 Ecuadorian Ecuador
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11 G11 Inca Red
(Pasankalla)

Bolivia Member of the ‘Salares’ ecotype of quinoa

12 G12 QQ065 Chile From extremely rainy region of Chile (>2 500 
mm); shown high resistance to postharvest 
sprouting

13 G13 Rosa Junin Peru

The next stage evaluated the eleven genotypes (G1 to G11) during the rainy season from December 
to March 2012/2013. The evaluation of nine genotypes (G1 to G9) was repeated in 2013/2014 as rainfed 
experiments at the Bunda Campus of LUANAR. The rainfed experiment was limited to Bunda 
Campus on-station as the crop proved to experience more challenges when grown under irrigation. 
To extend the rainfed evaluation to on-farm sites would require better preparation for farmers to 
reserve pieces of land for experimental trials and labour resources to be able to manage experimental 
plots. Four genotypes were dropped from further evaluation on account of poor performance and 
limited seed availability. 

©
 S

h
u

tt
er

st
o

ck

10     Prospects for quinoa adaptation and utilization in Eastern and Southern Africa



In the third stage, with support from the Royal Norwegian Embassy, LUANAR and Total Land 
Care (TLC), a non-governmental organization that is working on agricultural development projects, 
developed a five-year collaborative research project (2014 to 2019) under which quinoa was included 
as a crop to promote for food and nutritional security among rural communities of Central Malawi 
(Figure 3). The promising nine genotypes (G1 to G9 in Table 3) from the first stages were tested at 
six sites of varying altitudes in the central region of Malawi (Table 3, Figure 3). The sites were within 
the impact area of TLC at the time the project proposal was developed and took advantage of existing 
networks such as government agricultural extension workers, local leaders and the farming communities. 
The experiment environments (details are provided in Figure 3 and Table 3) varied from low altitude 
(470, 521, 503 and 515 m.a.s.l) and warm (25 to 28 °C) (Chiluwa EPA of Salima district and Nkhunga 
EPA of Nkhotakota district), medium altitude (555 and 617 m.a.s.l.) and mildly warm (23 to 25 °C) 
(Mwansambo EPA of Nkhotakota district), to high altitude (1 049, 1 267 and 1 077 m.a.s.l.) and cold (18 
to 22 °C) (Nalunga EPA of Dowa district and Malomo EPA of Ntchisi district). In each site, with the 
help of TLC field coordinators, two farmers that had fields close to a water source for irrigation were 
identified and requested to host the evaluation experiments. Each farmer hosted a complete replicated 
experiment and the owners provided labour for the management of the plots under the guidance of 
TLC field coordinators. Field coordinators were trained by the LUANAR research team on quinoa 
management and data collection prior to implementing the experiments. The nine genotypes were 
evaluated in a randomized complete block design (RCBD) from May to August, and repeated from 
September to November 2014, 2015 and 2016. Data on plant growth, maturity and grain yield were 
collected by the field coordinators while farmers provided their opinions on growth characteristics 
of the genotypes such as leaf for the leafy vegetable, maturity duration and grain yield during field 
days and group discussions.

Results from these introduction and evaluation trials in Malawi showed that cold temperatures 
slowed down growth within the first 21 days at the Bunda site and within the first 60 days in the case 
of the Bembeke site. Quinoa plants at the cooler Bembeke site had a mean height of 50 cm compared 
with 90–100 cm at Bunda. The genotypes took 90 to 112 days (with an overall mean of 90 days) to 
mature at Bunda, while at Bembeke the same genotypes took a mean range of 102 to 119 days to 
mature. Under these irrigated conditions, the genotypes with the highest (average) yield were Brightest 
Brilliant Rainbow (BBR), Cherry Vanilla, Multi-Hued and QQ74 that yielded up to 1.9 to 3 tonnes/ha.

Table 3: Description of locations/environments where multilocational evaluation trials of quinoa 
were conducted in Malawi (2014 and 2015) (See Figure 3 for location of the sites)

Environment 
(E)

Name of site Altitude in metres above 
sea level (m.a.s.l.) and 
geographical coordinates

Temperature (from May 
to August) & rainfall

E1 Nkhunga EPA (Nkhotakota District) 503 m & 515 m
S 12°35.383° E034°08.673°
S 12°35.338° E034°08.618°

Warm (25–28 °C)
1 401 to 1 500 mm

E2 Malomo EPA (Ntchisi District) 1 077 m
S 13°15.408° E033°52.549°
S 13°17.155° E034°07.155°

Cool (18–22 °C)
1 001 to 1 200 mm

E3 Chiluwa EPA (Salima District) 470 m & 521 m
S 13°27.040° E034°15.559°

Warm (25–28 °C)
1 001 to 1 200 mm

E4 Nalunga EPA (Dowa District) 1 049 m & 1 267 m
S 13°36.258° E034°00.642°
S 13°36.098° E034°00.356°

Cool (18–22 °C)
1 001 to 1 200 mm

E5 Kalira 2 EPA (Ntchisi District) 1 456 m
S 13°30.205° E033°57.691°
S 13°25.620° E033°58.150°

Cold (16–20 °C)
1 001 to 1 200 mm

E6 Mwansambo EPA (Nkhotakota 
District)

555 m & 617 m
S 13°14.199° E034°10.392°
S 13°09.252° E033°56.248°

Mildly warm (23–25 °C)
1 001 to 1 200 mm
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A comparison between rainfed and irrigated quinoa growing showed that rainfed (of 1 117 mm) 
trials at Bunda had the genotypes maturing in 75 to 90 days, earlier than when grown under irrigated 
season/conditions (90 to 112 days). Malawi’s rain season is in summer (November to March) when 
temperatures are at their highest and plant growth is the fastest. Under rainfed conditions at Bunda, 
grain yields were as high as 1 723 to 2 380 kg/ha by cv. Black-seeded, 1 110 to 2 096 kg/ha by Multi-
Hued and 816 to 2 076 kg/ha by Bio-Bio (P≤ 0.001). A notable reduction in yields was recorded from 
as high as 1 697 to 3 000 kg/ha realized under irrigated conditions to as low as 550 to 2 406 kg/ha 
under rainfed conditions.

Results from the multilocation trials conducted with support from the Royal Norwegian Embassy 
in Lilongwe under a project known as ‘Management for Adaptation to Climate Change II (MACC II)’, 
implemented by TLC and LUANAR, showed that quinoa can grow well in varying agro-ecological 
regions of Malawi under irrigated conditions (rainfed growing in these sites is yet to be conducted 
in the next phase of the project). The maturity period varied (p<0.001) among sites, with quinoa 
genotypes in the low-altitude sites (Chiluwa EPA in Salima (E3) and Nkhunga EPA in Nkhotakota 
(E1)) maturing earliest (within 90 days), while those in the mid-altitude sites (Mwansambo EPA 
in Nkhotakota (E6)) matured within 100 to 110 days and those in the relatively high-altitude sites 
(Nalunga in Dowa (E4), Kalira 2 (E5) and Malomo (E2) in Ntchisi) took up to 120 days on average 
to mature. No significant variation (P=0.05) and no genotype x environment interaction in maturity 
period were observed among the genotypes. 

Plant height (for the same genotype) at maturity stage differed significantly among sites (p < 0.001) 
but not among genotypes (p = 0.815) (within the same site) and there were no site/Environment 
x genotype interaction effects (p = 0.068). Environment therefore had a significant influence on 
quinoa as reflected in the variation in plant height observed across the sites. The plants grew tallest 
in Mwansambo, Nalunga and Kalira EPAs followed by Chiluwa and Malomo, while Nkhunga (the 
variation in altitude and temperature of the different sites is shown in Table 3) had the shortest plants 
overall. The same trend was reflected in panicle length, which also correlated positively with grain 
yield (Maliro et al., 2017).

Grain yields (Figures 4 and 5) varied (p<0.001) among sites and with significant site/Environment 
x genotype interactions. The highest yielding genotypes in the low-altitude and warm ecological 
area were Brightest Brilliant Rainbow (2 669 kg/ha) and Multi-Hued (2 018 kg/ha) in Chiluwa EPA, 
Cherry Vanilla (4 141 kg/ha, Multi-Hued (3 203 kg/ha) and Bio-Bio (2 630 kg/ha) in Nkhunga. For 
the mid-altitude area in Mwansambo, Bio-Bio (4 290 kg/ha), Puno (3 982 kg/ha), QQ74 (3 721 kg/
ha) and Cherry Vanilla (3 701 kg/ha) were the highest yielding. In Nalunga it was Cherry Vanilla (4 
141 kg/ha), Red head (3 685 kg/ha) and Multi-Hued (3 529 kg/ha); in Kalira 2 it was  BBR (1 302 kg/
ha), Bio-Bio (911 kg/ha) and Titicaca (911 kg/ha); while in Malomo the highest yielding genotypes 
were BBR (4 583 kg/ha), Bio-Bio (4 375 kg/ha), Multi-Hued (4 323 kg/ha) and Cherry Vanilla (3 984 
kg/ha) in the high-altitude sites. 

The grain-yield pattern was consistent across the six sites and genotypes tested in the subsequent year 
(2015), with Nalunga, Malomo and Kalira 2 (the high-altitude sites) emerging as the best environments 
for quinoa production in Malawi. The significant variation across the environments was attributed 
to temperature, whereby the high-altitude sites that experience lower temperatures within the range 
of 10 to 25 °C were the best environments for quinoa (Jacobsen et al., 2003). The sites that had lower 
grain yields experience temperatures of above 25 °C (25 to 28 °C) on average. Temperatures higher 
than 38 °C (Bazile, 2015) lead to high flower abortion and consequently reduce grain yields in quinoa 
(Garcia et al., 2015). There is a need to study further environmental factors like soil fertility parameters 
and irrigation water regimes practised at different sites as dictated by water availability and rates of 
evapotranspiration.  
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Figure 4: Grain yield (kg/ha) of quinoa genotypes evaluated at six different sites in Central Malawi 
during the 2014 irrigated season (May to August 2014) (Fprob. = 0.002 for genotype, <0.001 for 
sites) 

Figure 5: Grain yield (kg/ha) of quinoa genotypes evaluated at six different sites in Central Malawi 
during the 2015 irrigated season (May to August 2015) (Fprob. = <0.089 for genotype, <0.001 for 
sites, < 0.967 for genotype x site interaction; SED = 242; LSD = 477.5)  

Other agronomic studies on quinoa that have been conducted by LUANAR in undergraduate 
projects at Bunda Campus include time of planting for growing rainfed quinoa, sowing methods, 
plant spacing (plant density), and organic and inorganic fertilizer application rates. Results have shown 
that sowing soon after the first rains (normally in December and January) results in better plant 
establishment and grain yield than sowing a month later (Chakholoma, 2016). The main challenge 
was that the crop matured before the end of the rainy season, leading to sprouting of seeds before 
harvesting. Plant spacing of 10 cm x 20 cm, 20 cm x 20 cm, 10 cm x 50 cm (plant and row spacing) 
gave the highest grain yields (Lipenga, 2016), however this would vary with variety. The genotypes 
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appeared to have a high capacity for adapting their growth to the available space, such that in wide 
spacing the genotypes appeared to develop more branches. The results also suggest that optimal plant 
spacing may vary with genotype, plant nutrition and branching characteristics, all of which require 
further investigation.

3.2.2 Variety release for use by farmers

One of the accomplishments of quinoa research in Malawi has been the approval of seven genotypes as 
varieties by the Agricultural Technology Clearing Committee (ATCC) of the Ministry of Agriculture, 
Irrigation and Water Development. Data generated from the agronomic experiments conducted from 
2014 to 2016, demonstrated that it was possible to produce quinoa in Malawi. In August 2017, the 
ATCC approved the release of seven varieties of quinoa that included Brightest Brilliant Rainbow, 
Bio-Bio, Black seeded, Cherry Vanilla, Multi-Hued, QQ74 and Titicaca based on their consistent and 
outstanding performance in the various environments tested, with grain yields ranging from 1.2 t/ha  
to 4.0 t/ha. To popularize the varieties, the research team is currently working with the Ministry’s 
Seed Services Unit in developing a system for seed multiplication and a certification process.

3.2.3 Quinoa in nutritional programmes of rural communities

The quinoa component of the Management for Adaptation to Climate Change II project of Total Land 
Care was expected to contribute to increasing the access of under-five children and expectant and 
lactating mothers to nutrient-dense food products in the impact areas. The project therefore promoted 
the use of quinoa among farming community households at the sites (Nalunga EPA in Dowa district 
and Nkhunga EPA in Nkhotakota district) where the genotypes were evaluated. 

It is important to recognize that food insecurity is mostly localized, either by geographic location 
or by a community, or even by social groups within a given community. For example, the proportion 
of people who are food insecure is higher in rural areas than in urban areas (IAASTD, 2009). These 
challenges are aggravated by gender and other inequalities that disadvantage specific sections of the 
population such as women and children. While farmers in the food-insecure areas face mounting 
population pressure, declining landholding and deteriorating natural resource bases, gender inequalities 
also play a significant role in accounting for food insecurities in the case of women and children, who 
are mostly the vulnerable in households (IAASTD, 2009).

The promotional activities therefore included the distribution of quinoa seed (20 to 50 g per 
household) to 120 interested households, training of two women groups (10 women in Nalunga EPA 
and 15 women in Nkhunga EPA) in the processing of quinoa grain (specifically washing to remove 
saponin) and development of local recipes into products (such as nsima, cakes and beverages). Annual 
stakeholder meetings and field days were organized for farmers and other stakeholders to appreciate 
the quinoa crop and food products prepared from the grain. Individual households started growing 
the quinoa in their vegetable gardens for both the leafy vegetable (from 30 to 60 days from emergence) 
and the grain. 

No studies have been conducted as yet on the impact leaf harvesting has on the grain yield. In the 
latest reporting, farmers were growing separate plots of quinoa for their leafy vegetables. During 
the 2014/15 winter cropping season, one village in Nalunga EPA where 28 farmers grew quinoa 
in plots of various sizes, produced more than 1 000 kg (1 tonne) of quinoa grain under irrigation, 
which demonstrated the significant interest shown by many of the farmers in growing the crop. The 
communities indicated that they preferred quinoa leaves as a vegetable as in their opinion quinoa tasted 
better than the customary Amaranthus leaves. Quinoa can therefore be promoted for both the grain 
and the leaf. In that regard, research needs to include selection of varieties for leaf vegetables as well. 
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3.3 Ethiopia

3.3.1 First introduction and evaluation trials of quinoa in Ethiopia

Quinoa was first introduced in Ethiopia in 2002 through the Ethiopian Institute of Agricultural 
Research (EIAR) with 24 genotypes originating from South American countries (reported by Berhanu-
Amsalu Fenta of EIAR in a presentation at a quinoa training workshop organized by FAO in 2014 – 
unpublished). Table 4 provides a list of these genotypes and information on institutions and countries 
of origin. This formed part of a project initiated by the Danish International Development Agency 
(DANIDA) (Mujica et al., 2001). Following a process of seed multiplication, 16 of the genotypes had 
adequate seed for evaluation in multiple sites, while eight had poor germination (also highlighted in 
Table 4). From 2003 to 2005 the 16 genotypes were tested in four sites, namely Melkassa – high altitude, 
Ziway – mid to high altitude, Mieso – low altitude and Goffa – low altitude (Figure 6), representing 
different agro-ecological zones of the country under rainfed conditions. An Amaranthus variety was 
included in the test trials as a check as it is a close relative of quinoa species that are grown in Ethiopia 
and the rest of Africa (reported by Berhanu-Amsalu Fenta of EIAR in a presentation at a quinoa 
training workshop organized by FAO in 2014 – unpublished).

Table 4: List of quinoa genotypes (and institutions that provided the germplasm) that were 
introduced (in 2000) and evaluated for adaptability in different environments of Ethiopia 

Genotype Origin (Institution) Country

1 CICA-127 Cusco Peru

2 CICA-17 Cusco Peru

3 Salcedo INTA Puno – Peru

4 Kamiri IBTA Bolivia

5 Jujuy UNA Argentina

6 Baer-II-U Concepcion Chile

7 RU-2-PQCIP DANIDA-UNA England

8 RU-5-PQCIP DANIDA-UNA England

9 NL-6-PQCIP DANIDA-UNA Holland

10 E-DK-4-PQCIP DANIDA-UNA Denmark

11 G-205-95-PQCIP DANIDA-UNA Denmark

12 Sayana IBTA Bolivia

13 Ingapirca INIAP Ecuador

14 03-21-079BB UNA Puno - Peru

15 03-21-072RM UNA Puno - Peru

16 Canchones UAP Iquique - Chile

17 *Huariponcho CRIDER Puno - Peru

18 *Kancolla UNA Peru

19 *Narino INTA Pasto - Colombia

20 *Ratuqui IBTA Bolivia

21 *Real IBTA Bolivia

22 *ECU-420 INIAP Ecuador

23 *02-EMBRAPA EMBRAPA Brazil

24 *Illpa INIA Puno - Peru

*Genotypes that displayed poor germination during the initial sowing in Ethiopia and were not evaluated in multiple sites
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Figure 6: Map of Ethiopia showing locations where early quinoa trials were conducted (2003 to 
2005) by the Ethiopian Institute of Agricultural Research. 
Adapted from Tilahun Amede, Christopher Auricht, Jean-Marc Boffa, John Dixon, Thilak Mallawaarachchi, Mandi Rukuni and 
Tilaye Teklewold-Deneke. 2015. The Evolving Farming and Pastoral Landscapes in Ethiopia: A Farming System Framework for 
Investment Planning and Priority Setting, ACIAR, Canberra.  
(Full text accessible at https://www.researchgate.net/publication/296525932)

3.3.2 Promising plant growth and yield results

Performance of the tested genotypes showed that two of the 24 genotypes did well across the four sites 
in terms of plant growth and grain yield. Drought was reported in the first season (2002/2003) that 
significantly affected performance of the genotypes with the exception of two varieties (G-205-95 and 
RU-2RU-2) that survived. Differences in flowering and maturity time between the four environments 
were recorded for the two genotypes, but in general they flowered between 40 to 46 days and matured 
73 to 88 days from sowing (Table 5). Flowering and maturity were earliest at Ziway (flowering at 40 
and 39 days and maturing at 81 and 82 days) and Melkassa (flowering at 42 and 43 days and maturing 
at 81 days) compared with Mieso (flowering at 46 days and maturing at 87 and 88 days). However, at 
Goffa flowering was late (46 days as at Mieso) but maturity was the earliest (at 73 days). Studies in 
other countries like Malawi showed that late-flowering genotypes also tend to be late in maturing 
(Maliro et al., 2017). Early cessation of rains (drought) in Goffa might have induced early maturity in 
the genotypes. The significant variation in maturity performance across the four locations calls for 
selection of genotypes that would perform best in specific ecological zones. Early-maturing genotypes 
would be suitable for ecological zones that experience a short rainy season of two months. 
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Table 5: Average performance in duration to flowering (days) and maturity (days) and grain yield 
(kg/ha) of two of the surviving quinoa genotypes evaluated in four locations of Ethiopia from 2003 
to 2005 under rainfed conditions (Amsalu, 2014)

Location
Days to flowering Days to maturity Grain yield (kg/ha)

G-205-95* RU-2RU-2** G-205-95 RU-2RU-2 G-205-95 RU-2RU-2

1 Melkassa*** 42 43 81 81 1960 1864

2 Ziway**** 40 39 81 82 2161 2100

3 Mieso***** 46 46 87 88 1538 1537

4 Goffa***** 46 46 73 73 1524 1548

Detailed identity of the genotypes:
* (i) G-205-95-PQCIP-DANIDA-UNA-Denmark
**(ii) RU-2-PQCIP-DANIDA-UNA-England
Site characteristics: 
***Rainfall (1 001 to 1 250 mm), Altitude (2 001 to 2 400 m), Temperature (25.1 to 30 °C);  
****Rainfall (1 001 to 1 250 mm), Altitude (1 601 to 2 000 m), Temperature  (25.1 to 30 °C);  
***** Rainfall (751 to 1 000 mm), Altitude (401 to 800 m), Temperature (30.1 to 35 °C)

Grain yield from the two genotypes ranged from 1.5 to 2.0 t/ha (Table 4), with Ziway giving the 
highest yields of 2 161 kg/ha and 2 100 kg/ha for the two varieties, and Melkassa giving 1 960 kg/ha 
and 1 864 kg/ha for the two genotypes. Relatively low yields were obtained at Mieso, with 1 538 kg/ha 
and 1 537 kg/ha and at Goffa, with 1 524 kg/ha and 1 548 kg/ha.  The results from these evaluation 
trials clearly show two distinct zones for quinoa growing in Ethiopia – Melkassa and Ziway (being 
in the same group of locations for high yielding) and Mieso and Goffa (being in the same group of 
relatively low yielding, probably due to climatic conditions). The results showed that quinoa is relatively 
tolerant to drought and the two genotypes have potential for agro-ecological zones that experience 
moisture stress in the country. The two varieties were therefore recommended for wider testing in 
other similar locations of the country. 

3.3.3 Collaborative research with non-governmental organizations

After 2006, another quinoa trial or documented promotion project was carried out in Ethiopia (from 
2014 to 2015) when DanChurchAid (DCA) and EIAR developed a project titled ‘Introduction, 
Adaptation and Promotion of Quinoa in Ethiopia’ designed to test the performance of quinoa on 
farmers’ fields. The project planned to include Oromia and Amhara, which are major regions (two 
districts from each region). Amhara region included North Wello Zone (Dahina) and Wage-himra 
Zone (Dahenna); Ormiya region; Bale Zone (GuraDamole), Borenna (Moyale) and two research 
sites under EIAR (Melkassa and Arsi-Negele). In each zone two farmers were proposed to host the 
evaluation trials of the promising varieties. The DCA in Ethiopia has since reported promising yields 
for the farmers engaged in these trials (De Jene, 2015). The engagement of other stakeholders that 
work with the farmers with a focus on food and nutritional security, promises to catalyse adoption 
of quinoa into the food systems.
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4. FAO subregional approach to introduce 
quinoa to Africa

FAO is actively involved in promoting and evaluating the cultivation of quinoa outside native quinoa-
growing regions with the aim of strengthening food and nutrition security (Bazile et al., 2016). 

FAO initiated and funded a Technical Cooperation Programme (TCP) project titled “Technical 
assistance for the strengthening of the food system of quinoa” (TCP/SFE/3406) to support the 
institutional capacities of the beneficiary countries in the production, evaluation, management, 
utilization and marketing of quinoa under diverse farming systems and agro-ecological regions 
available in the participating countries (Djibouti, Ethiopia, Kenya, Somalia, South Sudan, Uganda and 
Zambia). This was envisaged to be a two-year (January 2014 – December 2015) project with expected 
outputs that included:

i)  Potential quinoa genotypes and ecotypes selected for screening through site matching based 
on the comparison of the ecological conditions between the sources and the target countries;

ii) Quinoa genotypes and ecotypes screened for introduction; field testing and selection of superior 
genotypes based on adaptability and suitability for the participating countries;

iii) Capacities of partners’ technical staff and stakeholders (among them selected farmers) strengthened 
in quinoa pre-production and post-production knowledge; and

iv) Information exchange, knowledge management and enhanced learning.

4.1 Evaluation and experimentation 

4.1.1 Countries and objectives

The FAO, through its Subregional Office for Eastern Africa (SFE) in Addis Ababa, introduced 10 
varieties to seven countries (see Table 6) in Eastern and Southern Africa, namely Djibouti, Ethiopia, 
Kenya, Somalia, South Sudan, Uganda and Zambia. Additional varieties from past initiatives were 
included in the trials in Ethiopia (one) and Kenya (four). Pilot experimental studies to determine the 
potential of quinoa to grow in the varied environments of the eastern and southern Africa region 
became necessary before extensive agronomic trials and utilization studies could be advanced. With 
coordination of the FAO SFE and CIAT regional offices (in Rwanda and Uganda), a regional network 
was established as a formal collaboration mechanism for quinoa development in the region. Membership 
comprised the seven countries that participated in the TCP project. The aim of the project was to 
evaluate adaptability and nutrient properties of a selected set of quinoa genotypes. Specific objectives 
were to:

i)  Identify superior genotypes among the test genotypes and evaluate the influence of the environment 
on the performance of the varieties;

ii) Characterize the quinoa genotypes and increase the capacity to handle and evaluate quinoa in 
the national research systems;

iii) Identify major constraint(s) to quinoa productivity in the seven countries;
iv) Initiate the proposed promotional strategies for quinoa and popularize the crop; and
v)  Identify superior nutrient properties of quinoa among the test genotypes and evaluate the 

influence of the environment on these properties.

4.1.2 Preparation for pilot trials

As quinoa is a new crop to the continent of Africa, many scientists working in government and 
agricultural research institutions are not familiar with the crop let alone its agronomic practices. 

    19



Thus, prior to implementing the trials, FAO organized a one-week training workshop (in December 
2014) facilitated by LUANAR to introduce the quinoa crop to scientists and researchers from the 
participating countries. The workshop provided training on field experimentation, production, 
postharvest management and utilization of quinoa. A research protocol was presented to guide the 
quinoa adaptability experiments in the participating countries. Participants developed experimental 
protocols and strategies for the promotion of quinoa in their specific countries. A quinoa research 
network for the Eastern and Southern Africa region was created to serve as a platform for sharing 
experiences throughout the experimentation period and beyond. FAO and CIAT-PABRA facilitated  
the acquisition of quinoa germplasm (Table 6) from Peru (Andean region) and Malawi, where several 
varieties had been introduced in 2012. A year after implementation of the pilot trials a workshop was 
organized for the participating scientists to share their results (where completed) and experiences and 
to chart the way forward for quinoa research in the region. 

4.1.3 Implementing institutions in participating countries

The trials were implemented by the governments’ agricultural research institutions – the National 
Agricultural Research System (NARS), which included the Centre d’Etude et de Recherche de Djibouti 
(CERD); Ethiopian Institute of Agricultural Research (EIAR) in Ethiopia; Kenya Agricultural & 
Livestock Research Organization (KARLO) and FAO Kenya; FAO Somalia and the Somalia Ministry 
of Agriculture; FAO South Sudan and the South Sudan Ministry of Agriculture and Forestry; the 
Ministry of Agriculture, Animal Industry and Fisheries (MAAIF) and National Crops Resources 
Research Institute (NaCRRI) in Uganda; and the Zambia Agriculture Research Institute (ZARI). 
The International Center for Tropical Agriculture (CIAT) in Uganda and Rwanda served as the 
international research coordinator based on their previous experience in a regional common bean 
programme (PABRA), while the FAO Eastern Africa Subregional Office (FAOSFE) provided the 
technical and administrative lead.

4.1.4 Evaluation trials – materials and methods

4.1.4.1 Sites
Research teams from participating countries selected sites with varied environmental conditions 
(or agro-ecological zones) for the adaptability studies in their countries through consultations with 
national stakeholders. A total of 23 sites were selected for the experiments. Ethiopia had four sites, 
Kenya six, South Sudan two, Somalia one, Uganda six and Zambia four. Djibouti did not establish a 
trial site during the project period (due to challenges the team faced which will be discussed later) and 
therefore no quinoa data were considered for Djibouti in this paper. Table 6 presents sites that were 
selected in each country with environmental characteristics that prevailed during the trial period.
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Table 6:  List and characteristics of 23 experimental sites in Eastern Africa where quinoa 
adaptability studies were conducted in 2015

Country Trial site Mean 
altitude 
(m)

Rainfall 
(mm)

Tempera- 
ture (°C) GPS position

Plan- 
ting/
sowing 
date 
(d/m)

Irrigation

Latitude (o) Longitude(o)

Djibouti Not identified 

Ethiopia Melkassa 1550 (H) 928 12.6-28.5 8˚24’N, 39˚21’ E Rainfed
Ziway 1575 (H) 728 12.9-29.8 8°20’N 39° E Rainfed
ArsiNegele Rainfed
Haramaya 1980(H) 800 8.25-25.4 9°26´N 42°3´E Rainfed
Kulumsa 2200 (H) 820 10.5-22.8 8°1´10´´N 39°9´11´´E Rainfed

Kenya Marimba 2155 (H) 1700-2600 14.9-17.4 S 00.03739 E 037.566119° 14/05 Supple-
mental

Embu 1511 (H) 1200-1400 18.9-20.1 S 00.50533° E 037.45852° 31/03 Supple-
mental 

*Koibatek 1965 (H) 900-1100 16-26 N 000030009’ E0350460784o Rainfed
Kithimu 1422 (M) 900-1000 19.6-20.7 S 00.50257° E 037.53354° 6/10 Rainfed
Karuangi 1292 (M) 1200-1340 20.4-20.9 S 00.56884° E 037.43617 23/09 Rainfed
Mitunguu/
Tunyai

964 (L) 820-920 21-23.5 S 00.10185° E 037.80373° 14/05 Rainfed

South 
Sudan

Palotaka E. 
Equatorial/Yei

433 (L) 1500 Rainfed

Akog site-Wau 831 (L) 2000 Rainfed

Somalia Dollow 116 (L) 0-1.8 25-33.9 4° 9’ 59” N, E 42° 4’ 43” E 9/11 Irrigated 
(supll)

Uganda Namulonge 1180 (M) Rainfed
Buginyanya 1800 (H) 9/04 Rainfed
Kawanda 1200 (M) 17.1-29.8 N000 24 13.3 E032’02.5 Rainfed
Serere 1128 (M) N1o31 E33o27 2/10 Rainfed
Mbarara 1430 (M) Rainfed
Nabuin

Zambia Mount 
Makulu

1213 800-1200 - 150 33’ S 0280 16’ E 08/06
24/06

Twice a 
week

Mutanda 1304 26o11.700’’ 12o25.25 4’ S;  04/06 3 times a 
week 

Misamfu 1536 8.7- 26.4 31˚ 08’E, 10˚ 13’S 2/06 every 
two days

Nanga 934 531.9 29/05 3 times a 
week

(H) = High altitude; >1 500 m.a.s.l., (M) = Mid altitude; 1 000–1 500 m.a.s.l., (L) = Low altitude; <1 000 m.a.s.l.

4.1.4.2 Germplasm 
Germplasm of genotypes for the studies was sourced from Peru (6) by FAO and others were supplied 
by LUANAR in Malawi but were originally sourced from Washington State University in the USA. 
Kenya (four genotypes) and Ethiopia (one genotype), who had some existing quinoa genotypes in 
their gene banks from previous introductions, added those to their list of germplasm for evaluation. 
An amaranth variety sourced from Uganda was added to the list as a check. Table 7 presents a list of 
the germplasm. CIAT coordinated the distribution of seeds of the genotypes to the implementing 
research institutions of the respective countries.
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Table 7: List of quinoa genotypes and genotypes supplied for the studies (FAO facilitated the 
exchange of germplasm from Peru with SMTA signed)

No. Genotype Origin Source DJ ET KE SO SS UG ZA

1 Brightest Brilliant Rainbow Oregon, US Malawi x x x x x x x

2 Bio-Bio Chile Malawi x x x x x x x

3 Cherry Vanilla Oregon, US Malawi x x x x x x x

4 Multi-Hued B C, Canada Malawi x x x x x x x

5 Titicaca Denmark Malawi x x x x x x x

6 Blanca de Junín Peru FAO x x x x x x x

7 Amarilla Sacaca Peru FAO x x x x x x x

8 Amarilla Maranganí Peru FAO x x x x x x x

9 Salcedo INIA Peru FAO x x x x x x x

10 Kancolla Peru FAO x x x x x x x

11 Quinoa Red* Not provided Kenya x

12 Quinoa Tricolore* Not provided Kenya x

13 Quinoa Black* Not provided Kenya x

14 Quinoa White* Not provided Kenya x

15 QQ74 Denmark Malawi x

16 Salcedo-INTA-Puno-* Peru Ethiopia x

17 Amaranth Uganda Check x x x x x x x

DJ=Djibouti, ET=Ethiopia, KE=Kenya, SS=South Sudan, SO=Somalia, UG=Uganda and ZA=Zambia; *Genotypes that participating countries 
sourced from their national gene banks.

4.1.4.3 Sowing, planting and agronomic management of trials
The trials were conducted in 2015, with sowing dates varying depending on the onset of rains in each 
country. The evaluation trials were conducted under rainfed conditions, except in Zambia where they 
were entirely under irrigated conditions. Where rainy seasons were too short to grow the quinoa to 
maturity, supplemental irrigation was applied, as in the case of two of four sites in Kenya (Marimba 
and Embu) and in Somalia where trials were not completed. Of the six countries that conducted 
the trials, four (Ethiopia, Kenya, Uganda and Zambia) successfully completed a total of 14 trials, 
yielding data that were statistically analysed. The quinoa plant growth and grain yield results from 
these countries are therefore referred to in this paper. Of the 14 trials, six (Melkassa, ArsiNegele, 
Ziway, Misamfu, Nabuin and Buginyanya) are in the high-altitude zones (>1 500 m.a.s.l.), six (Embu, 
Karuangi, Namulonge, Kawanda, Mount Makulu and Mutanda) are in mid-altitude zones (1 000– 
1 500 m.a.s.l.) and two (Mutanda and Mitunguu) in the low-altitude zones (<1 000 m.a.s.l.).

4.1.4.4 Experimental protocol
Trials in the participating countries followed a protocol that was developed at the initial stage of the 
project. Each country set up the experiments at the selected sites with the same experimental design. 
An exception was the number of genotypes – Kenya had an extra four varieties and Ethiopia an extra 
two added to their list in their evaluation (Table 7), which they sourced on their own or already had 
in their seed banks. 

All trial experiments were laid out in a randomized complete block design (RCBD) with three 
replications and plot sizes of 2 m x 2 m (five row plots spaced at 50 cm). Five grammes (gm) of seed 
mixed with 5 gm of sand (1:1) were sown per plot using the drilling planting method in all sites. Two 
weeks after germination, plants were thinned to achieve a spacing of 50 cm between rows x 10 cm 
between plants (a total of 100 plants). A net plot comprised three centre rows per plot and resulted 
in approximately 60 plants. Spacing between plots was 0.50–1 m and 1–1.5 m between replicates. 
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The trials were planted at different times that depended on climatic conditions and environmental, 
technical, institutional or logistical challenges faced in each country. The earliest planting was in 
March 2015 in Kenya and Uganda and the latest in October and November 2015 in Somalia and 
Sudan respectively (Table 6). 

4.1.4.5 Soil nutrient status
Soil sampling and analysis of the experimental plots in all trial sites were conducted for pH, texture 
and major mineral content (N, P, K). The major nutrients’ status results guided fertilizer application 
rates in Somalia and Zambia to adjust to application rates used in quinoa where it is traditionally 
cultivated. In most of the sites, N:P:K (17:17:17) fertilizer was applied, while at some sites CAN 
was used for top dressing. Soil analysis was conducted at in-country laboratories, except for South 
Sudan whose samples were analysed at NARL-Uganda and Somalia whose samples were analysed at 
KARLO-Kenya (Table 8). 

Soils of the Somalian site were very alkaline (pH=8.15) and although quinoa can do well in soils of 
up to pH=8.5, soils in the experimental plot were amended with ammonium sulphate (AS). In general, 
quinoa does best in soils with a pH range of 6.0–8.5, but it is cultivated even in acidic and alkaline 
soils. In addition, quinoa thrives in well-drained fertile soils (Espindola, 1986), especially clay-loam 
soils with good nutrient content and drainage, however some quinoa genotypes are well adapted to 
extreme soil conditions (Mujica, 2009). 

The nutrient status of all the sites fell into a very low category for nutrient (P & K based on Mehlich 
3 extractable nutrients) availability that justified application of inorganic fertilizers.

4.1.4.6 Data collection and analysis
Trial management practices were noted for each experiment, that included sowing date, frequency and 
quantity of irrigation, timing, amount, distribution, placement and type of fertilizer and harvesting 
date. Performance of the different genotypes was determined by data collection that included number 
of days to emergence, stand count at harvest, plant height (cm), flowering date at 50 percent (DF), 
maturity date at 90 percent (DPM), days from sowing to flowering, days from sowing to maturity, 
panicle length, branching architecture, 1 000 seeds weight (g) and determined seed yield. Incidences 
of pests and diseases were also noted but scores were not done due to lack of expertise in the research 
teams. 

Table 8: Soil characteristics of some of the experimental sites

Country Trial sites 
Soil characteristics

PH OM (%) N (%) P (ppm)

Uganda NACRRI 4.65 6.2-9 0.3-0.4 4-30

BugiZARDI 4.7 9-9.2 0.4 3.1

NARL 4.95 6.2-7.4 0.3-0.35 2.1-15.5

Kenya Marimba 5.28 3.35* 0.35 40

Embu 5.24 1.60* 0.14 30

Mitunguu/Tunyai 7.08 1.09* 0.14 30

Kithimu 5.01 1.75* 0.16 30

Karuangi 5.28 1.21* 0.16 30

South Sudan Palotaka E. Equatoria 6.12 7.01 0.33 8.01

Akog site-Wau 6.5 5.17 0.26 17.5

Somalia Dollow 8.12 1.43 0.14 14

*Total carbon
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The data from Ethiopia, Kenya, Uganda and Zambia (representing 14 sites) were made available 
to CIAT for analysis. Six parameters were analysed – days to 50 percent flowering (DF), days to 
physiological maturity (DPM), plant height (PH), panicle length (PL), seed yield/plot and yield/ha 
(YDHA). Analysis was done using the Breeding View tool of the integrated breeding platform (IBP 
Breeding Management System Version 3.0.8 of 2015). Single site analysis and G x E was analysed through 
the Finlay Wilkinson model (FW), additive main effect and multiplicative interaction (AMMI) model 
analysis and genotype main effects and genotype × environment interaction effects (GGE) model 
(Gauch, 2006). Stability and cultivar superiority were estimated by means of these models. The GGE 
bi-plots grouped the 14 sites (environments) into mega environments (described in section 4.2.5.3) 
where similar interventions can be promoted based on the data generated (Mukankusi et al., 2016).

4.2 Agronomic performance of quinoa in the 14 environments

4.2.1 Germination and crop establishment

Results on germination success of crop establishment varied across sites. Some genotypes completely 
failed to germinate in some sites. In Uganda, the trial at NaCRRI (Namulonge) was re-sowed but 
on a different field where the genotypes germinated and had a better establishment. The failure to 
germinate in the first field was attributed to low soil-fertility levels. Addition of organic matter to 
the replanted trial field resulted in better establishment. There was also poor establishment of trials 
at Kenya’s Marimba site that was attributed to high altitude (2 155 m.a.s.l.) similar to Uganda’s 
Namulonge site. The first sowing at the Kenya Mitunguu site resulted in poor germination but when 
resowed the crop was much better than the first sowing. Poor germination was also experienced in 
Ethiopia and Somalia in four genotypes that failed to germinate. This was attributed to poor seed 
quality. In Somalia the failure of the four genotypes, Amarilla Maranganí, Amarilla Sacaca, Kancolla 
and Blanca de Junín (Table 6) was attributed to seed quality, especially the age of the seed that arrived 
in Somalia more than eight months after it was shipped from Peru. The same was observed in other 
trials of FAO—TCPs in other regions. The seed germination tests also showed that seed supplied 
by LUANAR (Malawi) of about 12 months’ shelf life had relatively higher germination rates (Table 
9), strongly suggesting that age of the seed and possibly other factors affected its viability. While 
the shipping conditions (high temperatures and moisture) might have accelerated the deterioration 
of the seed shipped to Somalia, drought and heat conditions experienced in the Somalia sites might 
also have contributed to the failure. In general, the varieties that originated from Peru either failed to 
germinate or had a very low germination rate compared with those sourced from Malawi (although 
they were different genotypes). 

Quinoa establishment under rainfed conditions in Malawi showed that seed sowing that is followed 
by heavy rainstorms is often poor, attributed to seed being washed away by runoff and mechanical 
damage or battering of the germinating seed by raindrops. At times it may also be that very high 
moisture smothers the seedlings at their early stages. Mulching of beds sown with quinoa seed has 
been proposed to improve the establishment of seedlings especially under rainfed conditions (Maliro 
and Guwela, 2015). Mulching has been observed to reduce or prevent seed washing down the slope as 
well as mechanical damage of the tender seedlings. However, to prevent the seedlings from becoming 
spindly, the mulch should not be left too long. There is a need for more studies on the quality of quinoa 
seed to increase our understanding of recommended seed quality factors, and field and environmental 
conditions for good establishment of quinoa. 
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Table 9: Seed quality test results for quinoa genotypes sampled from Somalia batches received 
from Peru (KEPHIS laboratory)

Sample ID Purity % Germination %

Amarilla Maranganí 99.5 0

Multi-Hued 99.4 27

Blanca de Junín 99.5 0

Amarilla Sacaca 99.2 0

Kancolla 99.73 0

Titicaca 99.3 33

Salcedo INIA 97.9 7

Bio-Bio 99.6 26

Brightest Brilliant Rainbow 99.6 20

Cherry Vanilla 99.6 25

Amaranth Golden 99.9 38

NB: A germination rate of 60 to 100 percent would be regarded as good, depending on seed storage conditions and prevailing temperatures after 
sowing (Strenske et al., 2017, Moreno et al., 2017, de Jesus Souza et al., 2017)

Plants of some of the genotypes exhibited variation in morphological traits, suggesting that there 
might have been seed mixing up or their landrace status prior to seed shipping. For instance, plants 
with yellow- and pink-coloured stems were observed in the experimental plots of the variety Titicaca 
while Brightest Brilliant Rainbow (BBR) had some plants with intermediate panicle shapes and others 
with a glomerulate shape. Yellow and orange panicles were observed in Multi-Hued and Titicaca 
and green and purple panicles were observed within the variety Bio-Bio at NARL-Kawanda. In 
some cases, rouging out of the off-types was done while in other cases it was not done. On the other 
hand, the seed quality results from KEPHIS for the Somalia samples showed greater than 99 percent 
purity (Table 9) for all the test varieties. Quinoa is a self-pollinated crop with up to 10 percent cross-
pollination (Jacobsen, 1993), which could explain the observation of off-types that probably arose 
from cross-pollination and not only as a result of seed mixtures. These observations call for studies 
to examine if cross-pollination is accelerated beyond the 10 percent by other environmental factors. 
Meanwhile seed multiplication needs to be done in distant isolation plots for each variety with at least 
100 metres that is normally applied in cross-pollinated crops such as maize.

4.2.2 Flowering, maturity, panicle length and plant height

Eleven genotypes were successfully established and evaluated in the 14 environments (Figure 6) that 
included three in Ethiopia (ArsiNegele, Melkassa and Ziway), three in Kenya (Embu, Tunyai and 
Karuangi), four in Uganda (Kawanda, Namulonge, Buginyanya and Nabuin) and four in Zambia 
(Misamfu, Mount Makulu, Mutanda and Nanga). The quinoa genotypes showed significant differences 
in their performance across the environments in duration from sowing to flower (DSF) and physiological 
maturity (DPM) (Table 10), plant height, panicle length (Table 11) and seed yield. There were also 
significant (P= 0.05) in-country differences between varieties. Early flowering corresponded with 
early physiological maturity and likewise for late onset of flowering. 
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Table 10: Variation in days from sowing to flowering (DSF) and days to physiological maturity 
(DPM) among 10 quinoa varieties in fourteen sites of Eastern and Southern African countries (s.d. = 
standard deviation, s.e.m. = standard error of mean)

Name of site Days from sowing to flowering (DSF) Days to physiological maturity (DPM)

Mean ± s.d. s.e.m. Variance (σ) Mean ± s.d. s.e.m. Variance (σ)

A Misamfu   42.32±2.039   0.6146   4.156   113.7±17.42   5.251   303.3

B Mount Makulu   40.94±3.371   1.0163   11.363   91.6±2.11   0.637   4.5

C Mutanda   54.15±0.192   0.0578   0.037   150.1±25.69   7.744   659.7

D Nanga   41.94±2.185   0.6587   4.773   116.8±3.08   0.930   9.5

E Kawanda   38.48±2.152   0.6807   4.633   90.3±8.33   2.635   69.4

F NaCRRI   56.21±3.629   1.1475   13.168   - - -

G BugiZARDI   54.49±2.430   0.7327   5.905   113.9±6.591   6.591   477.8

H Nabuin   32.78±1.586   0.4782   2.516   71.9±1.136   1.136   14.2

I ArsiNegele - - -   92.2±3.596   3.596   116.4

J Melkassa - - -   83.1±0.816   0.816   5.3

K Ziway - - -   91.2±2.201   2.201   38.8

L Embu   44.18±1.848   0.5571   3.414   110.0±8.119   8.119   725.1

M Tunyai   33.45±4.132   1.2458   17.073   97.9±4.115   4.115   186.3

N Karuangi   30.45±4.569   1.3775   20.873   98.2±3.511   3.511   110.9

 

The quinoa genotypes matured the earliest at Nabuin (71.9 days), followed by Melkassa (81.3 days), 
Kawanda, Ziway, Mount Makulu, ArsiNegele, Tunyai and Karuangi, with the mean maturity period 
ranging from 90.3 to 98.2 days. The intermediate maturity period was 110 days in Embu, 113.7 days 
in Misamfu, 113.9 days in Burginyanya and 116.8 days in Nanga, while the genotypes at Mutanda 
took 150.1 days (the longest period) to mature. This variation in maturity period across the tested sites 
could be attributed to variation in temperatures that are greatly influenced by altitude and latitude. 
Sites in low altitudes would generally be warmer than those in high-altitude ecological areas. The 
influence of latitude is that ecological areas that are closer to the equator are warmer than those that 
are further away from the equator. The rate of biochemical reactions that have a direct effect on crop 
flowering mechanisms is generally faster as temperature increases (Fitter and Fitter, 2002; Kaesha, 
2009).  The sites where the quinoa matured earlier are located in ecological areas that are closer to the 
equator and temperatures were expected to be higher except where they are modified by high altitude 
and physiological maturity was moderately delayed. On the other hand, maturity of crops can also 
be accelerated by short rainfall duration whereby early cessation of rains induces early senescence 
of the plants before real physiological maturity. However, no such case was reported in the current 
trials, hence the variation observed here can be attributed to temperature variations. The variation in 
maturity period across the varied sites shows that quinoa has plasticity to adjust to changing agro-
ecological conditions (Olesen et al., 2012) that are often defined by temperature and rainfall.

4.2.3 Panicle length and plant height

The longest panicles were observed in Embu (107.5 cm) and the shortest in Ziway (8.9 cm) (Table 
11). The greatest variation in panicle length was observed in Embu (ranging between 62.5–84.6 cm) 
and the least variation in ArsiNegele (Table 11). With respect to plant height, significant differences 
(P=0.001) were observed among the different genotypes and among the test sites. Once again variation 
was highest in Embu (101–183 cm), followed by Nanga (89–154 cm). The tallest quinoa plants (183 
cm) were observed in Embu, Kenya and the shortest (45.8 cm) in Buginyanya, Uganda. In Ethiopia, 
Kenya and Zambia, due to the large plant heights observed, staking was done to avoid lodging. In 
Zambia, strings supported by stakes were tied around the plot and in Ethiopia and Kenya, stakes were 
inserted in the ground per two to three plants.
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Table 11: Variation in panicle length (cm) and plant height (cm) in 10 quinoa genotypes in fourteen 
sites of Eastern and Southern African countries (s.d. = standard deviation, s.e.m. = standard error 
of mean)

Name of site Panicle length (cm) Plant height (cm)

Mean ± s.d. s.e.m. Variance (σ) Mean ± s.d. s.e.m. Variance (σ)

A Misamfu   25.67±5.786   1.745   33.48   85.42±21.57   6.504   465.3

B Mount Makulu   29.68±7.171   2.162   51.42   103.10±10.24   3.088   104.9

C Mutanda   16.51±0.940   0.283   0.88   89.45±13.08   3.945   171.2

D Nanga   39.87±7.345   2.215   53.95   120.65±23.66   7.134   559.8

E Kawanda   67.23±2.493   0.788   6.21 - - -

F NaCRRI   35.10±3.408   1.028   11.61   116.11±10.01   3.017   100.1

G BugiZARDI   16.52±1.269   0.383   1.61   39.83±4.02   1.211   16.1

H Nabuin   28.21±3.874   1.168   15.01   76.80±14.63   4.411   214.0

I ArsiNegele   17.81±2.774   0.836   7.70   67.66±11.93   3.596   142.2

J Melkassa   19.47±5.636   1.782   31.77   85.02±17.11   5.411   292.8

K Ziway   14.24±4.871   1.722   23.73   62.91±10.37   3.667   107.5

L Embu   84.68±14.523   4.379   210.91   142.91±27.52   8.297   757.2

M Tunyai   31.82±10.381   3.130   107.76   108.82±19.64   5.922   385.8

N Karuangi   31.95±10.162   3.064   103.27   118.24±22.10   6.664   488.4

4.2.4 Grain yield performance

The grain yield from four countries – Ethiopia, Kenya, Uganda and Zambia – is presented in Table 12. 
The quinoa grain yield was most variable at Melkassa, ranging from 40 kg/ha to 4 411 kg/ha, while 
Nanga environment had the least variable yields with a range of 1 184 to 1 301 kg/ha. The highest 
grain yield (4 468 kg/ha) was reported in Embu and the lowest (40 kg/ha) in Melkassa.

The grain yields realized in these environments were as high as those reported in the environments 
of South America, while yields in some environments of Kenya were higher. High quinoa yields within 
the range of 4 to 9 t/ha have been reported in several trials within and outside the Andean region, i.e. 
6.07 t/ha in La Paz, Bolivia, 6.1 t/ha in Chile, 9.33 t/ha in Neuva, Mexico of USA (Bhargava and Ohri, 
2015) and Turkey (Yazar et al., 2015). These results show that under fertile and optimal conditions 
(such as water, temperature and radiation), high quinoa grain yields can be achieved. High yields of 
6 to 9 t/ha may add to the attractiveness of the crop in regions of the world where maize, or wheat 
and rice are staple grains.

Table 12: Variation in yield (kg/ha) in 10 quinoa genotypes (listed in Table 9) in fourteen sites of 
Eastern and Southern African countries (s.d. = standard deviation, s.e.m. = standard error of mean)

Name of site Mean Median Min. Max. s.d. s.e.m. Variance (σ)

A Misamfu   1640   1437   1176.7   2364   411.2   124.0 169066

B Mount Makulu   1760   1435   765.7   2726   760.4   229.3   578146

C Mutanda   1345   1213   297.7   3011   715.1   215.6   511304

D Nanga   1236   1236   1183.6   1301   26.8   8.1   718

E Kawanda   368   319   155.4   974   237.0   74.9   56160

F NaCRRI   1850   1935   1134.7   2891   584.5   176.2   341627

G BugiZARDI   801   801   671.5   1033   105.0   31.7   11021

H Nabuin   2106   2106   1537.1   2684   327.0   98.6   106924

I ArsiNegele   1214   789   169.9   2928   1113.1   393.5   1238963

J Melkassa   1944   2134   40.0   4411   1411.9   499.2   1993540

K Ziway 642 195 40.4 3950 1340.9 474.1 1798116
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Name of site Mean Median Min. Max. s.d. s.e.m. Variance (σ)

L Embu   3046   2805   1542.0   4468   924.6   278.8   854904

M Tunyai   1033   742   254.0   2052   597.3   180.1   356783

N Karuangi   1599   1276   898.0   2800   667.6   222.5   445756

4.2.5 Genotype by environment (G x E) interaction

A Finlay Wilkinson (FW) analysis of G x E of 11 genotypes across 14 environments showed significant 
G x E interactions for all traits except yield (Table 13). However, FW accounted for only 16.8, 23.23, 
19.8, 13.9 and 10.5 percent of the G x E for DF, DPM, panicle length, plant height and yield (kg/ha) 
respectively. Mean days to flowering ranged between 41 (Bio-Bio and Brightest Brilliant Rainbow) 
and 44 days (Amarilla Sacaca) across the 14 environments. Days to physiological maturity ranged 
between 91 days (Titicaca) and 112 days (Blanca de Junín). The genotype Amarilla Maranganí had 
the longest panicles and Bio-Bio the shortest, while the genotype Amarilla Maranganí was the tallest 
and the shortest plants were from the genotypes Bio-Bio, Brightest Brilliant Rainbow and Cherry 
Vanilla. The highest yield was recorded by Titicaca (2 022 kg/ha) and the lowest by Salcedo INIA 
across the 14 sites (Tables 15 and 16). 

An additive main effect and multiplicative interaction (AMMI) analysis (Table 14) accounted for 
7.95, 79.3, 78.6, 83.7 and 55 percent of the total variation for DF, DPM, panicle length, plant height 
and yield respectively. Both IPCA 1 and IPCA 2 were significant (P=0.05) for all the parameters 
measured, accounting for higher proportions of the variation: 63.4, 98, 99, 99 and 75 percent of the G 
x E observed for DF, DPM, panicle length, plant height and yield respectively. 

Table 13: Finlay Wilkinson analysis of variance for parameters of 11 quinoa genotypes among 14 
environments

Source of variation
 DF  DPM Panicle length

d.f. s.s. d.f. s.s. d.f. s.s.

Genotypes 10 98.7354 10 6330.1263** 10 1434.8603**

Environments 10 8702.869** 12 48042.9335** 13 55358.0721**

Sensitivities 10 129.4294* 10 4932.1581** 10 1094.0642**

Residual 88 642.9321 99 16296.4285 115 4419.4834

Total 118 9573.9659 131 75601.6464 148 62306.48

Plant height YDHA

Genotypes 10 7864.9305** 10 12209765.96**

Environments 12 101416.7266** 13 62008540.26**

Sensitivities 10 4199.4879* 10 5405383.523 NS

Residual 106 25970.6427 108 51397349.77

Total 138 139451.7878 141 131021039.5

Table 14: Additive main effects and multiplicative interaction (AMMI) model for 10 quinoa 
genotypes evaluated in 11 environments

Source DF DPM Panicle length Plant height Yield (kg/ha)

d.f. s.s. d.f. s.s. d.f. s.s. d.f. s.s. d.f. s.s.

Genotypes 10 89 10 60753 10 29439 10 1277539 10 16943406

Environments 10 8939** 12 100607* 13 57383* 12 1703134 13 95704515**

Interactions 100 780 120 616629 130 318769 120 15279908 130 139143073

 IPCA 1 19 323** 21 593897** 22 313803** 21 15255412** 22 60392410**

 IPCA 2 17 172** 19 10058** 20 3120** 19 12723** 20 44086428**

 Residuals 64 284 80 12673 88 1846 80 11773 88 34664235
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The AMMI showed that the environments of Mount Makulu, NaCRRI and Karuangi had the 
largest genetic differences with respect to DF, while the environment of Mutanda exhibited the least 
genetic variance variable. With respect to DPM, the environments of Embu, BugiZARDI and Mutanda 
exhibited the highest genetic differences. Regarding panicle length and plant height, the highest genetic 
differences occurred in Ziway. With respect to yield, the highest genetic differences were observed in 
ArsiNegele and Ziway. Environments exhibiting high genetic variances can be proposed as good test 
environments for the specific traits. For instance, environments that exhibit contrasting temperatures 
can be sites for selection of genotypes adapted to either warm or cold environments.

4.2.5.1 Stability of genotype performance across environments
Stability implies the ability to maintain consistent performance across different test environments. 
Based on AMMI and static stability, the genotype Salcedo INIA was the most stable for days to 50 
percent flowering (DF) and Titicaca was the most unstable (Table 15). Similarly, with regard to DPM, 
Amaranth was the most stable and the genotype Titicaca the most unstable. Regarding panicle length, 
the genotype Titicaca was the most stable and Blanca de Junín the most unstable. With respect to plant 
height, the genotype Cherry Vanilla was the most stable and Amarilla Sacaca the most unstable; for 
YDHA, Amarilla Sacaca was the most unstable and Salcedo INIA the most stable. Based on Wricke’s 
Ecovalence, Amaranth Gold and Amarilla Gold were the most stable with respect to yield and plant 
height, while the genotype Titicaca was the most unstable. 

Based on yield performance, the genotypes Multi-Hued, Brightest Brilliant Rainbow, Titicaca and 
Bio-Bio were the best yielding genotypes in Zambia (Table 15), Amarilla Maranganí, Multi-Hued and 
Titicaca were the best performing across all sites in Uganda (Tables 15 and 16), while Multi-Hued, 
Amarilla Maranganí and Amarilla Sacaca performed the best across all the sites in Kenya (Tables 15 
and 16).

4.2.5.2 Cultivar superiority
Cultivar superiority is defined as the distance mean square between the cultivar’s response and the 
maximum response averaged over all locations (Lin and Binns, 1988). Since the maximum response 
is the upper boundary in each location, a small mean square indicates general superiority of the test 
cultivar. Brightest Brilliant Rainbow emerged as the most superior (stable and consistent) genotype 
with regard to days to 50 percent flowering as it was consistent in its good performance, i.e. shortest 
number of days to flowering across the 14 environments (Table 16). Bio-Bio had the most superior 
performance regarding DPM, i.e. shortest number of days to physiological maturity across the 14 
environments. The genotype Amarilla Maranganí had consistent long panicles and tall plants across 
the environments, while the genotype Kancolla was the most superior in yield performance among 
the test environments. 

4.2.5.3 Grouping of environments and best performing varieties
Based on yield performance, the 14 environments could be grouped into two mega-environments. 
The first mega-environment included ArsiNegele, Melkassa, Mount Makulu, Misamfu, Nanga, 
Namulonge, Kawanda, Karuangi and Tunyai. The second mega-environment included Misamfu, 
Nanga, NaCRRI, Kawanda, Karuangi, Embu, Tunyai and Ziway. There was an overlap between 
these environments with Embu and Tunyai being unique for environment 2 and ArsiNegele, Melkassa 
and Mount Makulu being unique for environment 1. Titicaca and Brightest Brilliant Rainbow were 
the leading genotypes (best performing) in mega-environment 1 and Amarilla Sacaca and Amarilla 
Maranganí were the leading genotypes in mega-environment 2.

This data set showed that altitude as a component of the environment did not play a major role in 
influencing genotype performance as high-, medium- and low-altitude environments were grouped 
together. Among the 14 environments, six were classified as high-altitude (>1 500 m.a.s.l.) and included 
Melkassa and Ziway in Ethiopia, Embu and Marimba in Kenya, Buginyanya in Uganda and Misamfu 
in Zambia; six were classified as mid-altitude (1 000–1 500 m.a.s.l.) and included Kithimu and Karuangi 
in Kenya, NARL-Kawanda and NaCRRI in Uganda, Mount Makulu and Mutanda in Zambia; and 
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two as low-altitude (<1 000 m.a.s.l.), which included Nanga in Zambia and Tunyai in Kenya (Table 
12). This could imply that quinoa is widely adapted to both low and high altitudes, a fact that has 
been well documented (Jacobsen et al., 2007; Geerts et al., 2008). Inclusion of more data sets from 
other countries could help to ascertain this fact for Africa. The data on temperature, rainfall and soil 
properties were incomplete and hence no relation could be made to tag a specific environmental factor 
as influencing the performance of the quinoa. Parameters that are usually modified by altitude and 
latitude, such as temperature, rainfall and season, need to be collected. In addition, some ecological 
zones receive winter rains while other sites receive summer rains. The current trials were conducted 
under irrigated conditions in some countries (Table 6) during different stages of plant growth, while 
in other countries the trials were conducted under rainfed conditions, all of which accounted for the 
variation in performance of the genotypes across the environments. 

4.2.6 Pests and diseases that affected quinoa in the trials

Observations were made of incidences of pests and diseases, but no scoring was done on incidence 
or severity due to lack of training in conducting such assessments. Aphids were the single commonly 
observed pest that affected quinoa in the Kenya, Uganda and Zambia sites. In Uganda, the aphids 
were linked to plant stunting and leaf curling. Another pest observed was caterpillars that affected 
the leaves (forming webs, perforations and crinkling), panicles and stem bases (leading to plants 
breaking from the soil surface). 

A few disease symptoms were observed on the quinoa genotypes. Leaf spots were observed on 
Amaranth at Buginyanya in Uganda, as well as virus-like symptoms (leaf mottling and shrinking) 
and infected plants were observed to have flowered earlier than uninfected plants. Damping-off 
symptoms were also observed and were attributed to soil organisms that needed to be ascertained. 
Insects similar to pod suckers, pod beetles that affect legumes and ladybird beetles were also reported 
from some of the trials. There is a need to include entomologists, plant pathologists, nematologists 
and soil scientists for their expertise in the identification of pests and diseases observed in the trials. 
Training of field staff engaged in similar trials on common pests and diseases that occur in quinoa 
will help in the documentation of this crucial data.

4.3 Nutrient content in quinoa grown in different environments

As African countries introduce and promote quinoa into their food systems, variation in nutritional 
composition of the crop’s grain need to be known if it can significantly vary from one environment 
to another, especially with variation in soil fertility. The potential of quinoa to improve African diets 
would be realized if the nutritional profile of the grain grown in different African environments were 
similar or higher than grain grown in the Andean environments (Lughano et al., 2017 (in review)). 
Earlier studies indicated that the nutritional profile may vary with location and environmental factors. 
For example, variations in seed yield, total protein content and amino acid composition among cultivars 
grown in Andean highlands and the Argentinean Northwest were due to environmental and climatic 
factors (Gonzalez et al., 2012). The current FAO-supported project also supported a study on the 
effect of genotype and environment on protein content and amino acid in selected tested genotypes, 
conducted by CIAT (Nairobi) (Table 17). Quinoa grain samples of Titicaca, Brightest Brilliant 
Rainbow and Kancolla genotypes were drawn from quinoa harvest grown in Uganda (Mbarara and 
Namulonge trial sites) and Zambia (Mount Makulu trial site). Protein content in the three genotypes 
was least in grain from Mount Makulu trial site in Zambia (P <0.05). For the Titicaca and Brightest 
Brilliant Rainbow genotypes, the non-essential and essential amino acids were highest in genotypes 
grown at Namulonge (P<0.05) (Table 16), attributed to variation in soil status. 
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Table 17. The protein content (%) and amino acid profile (µg/g) of quinoa seeds grown in different 
research sites in Uganda (Mbarara and Namulonge) and Zambia (Mount Makulu) (Lughano et al., 
2017 (in review))

Titicaca BBR Kancolla

Mbarara Namulonge Mount 
Makulu

Namulonge Mount 
Makulu

Mount 
Makulu

Protein 17.22±0.32c 16.17±0.23b 14.23±0.25a 16.93±0.15A 14.33±0.21B 13.13±0.25

Non-essential amino acids

Aspartic acid 1.49±0.19a 1.57±0.13a 1.60±0.14a 1.69±0.10A 1.64±0.11A 1.51±0.05

Serine 0.86±0.17a 1.29±0.29b 1.06±0.10a,b 1.03±0.15A 1.17±0.14A 1.03±0.10

Glutamic acid 2.70±0.18a 2.600.08a 2.48±0.04a 2.59±0.08B 2.21±0.17A 2.22±0.15

Proline 0.95±0.17b 1.14±0.03b 0.70±0.03a 0.76±0.02B 0.70±0.06A 0.65±0.03

Glycine 1.25±0.15a 1.24±0.14a 1.22±0.28a 1.28±0.23A 1.30±0.23A 1.20±0.24

Alanine 0.74±0.02a 0.92±0.09b 0.80±0.13a,b 0.95±0.09A 0.84±0.12A 0.83±0.11

Tyrosine 0.54±0.15a 0.43±0.04a 0.43±0.05a 0.46±0.03B 0.44±0.04A 0.37±0.02

Arginine 1.73±0.15b 1.59±0.02b 1.27±0.01a 1.22±0.05A 1.14±0.06A 1.14±0.03

Essential amino acids

Threonine 0.95±0.23a 0.77±0.10a 0.78±0.09a 0.85±0.09A 0.81±0.09A 0.77±0.09

Valine 0.77±0.07a 0.92±0.03b 0.80±0.06a 0.92±0.11A 0.83±0.07A 0.76±0.10

Methionine 0.20±0.03b 0.28±0.02c 0.16±0.02a 0.27±0.01B 0.13±0.01A 0.12±0.06

Isoleucine 0.70±0.04a 0.73±0.01a,b 0.77±0.02b 0.83±0.01B 0.78±0.06A 0.72±0.06

Leucine 1.07±0.04a 1.21±0.03b 1.18±0.02b 1.29±0.02B 1.18±0.08A 1.14±0.07

Phenylamine 0.58±0.04b 0.62±0.04b 0.44±0.02a 0.51±0.03B 0.42±0.03A 0.37±0.08

Lysine 1.32±0.34a 1.26±0.02a 1.01±0.10a 1.02±0.17A 0.86±0.12A 0.98±0.13

Histidine 1.±10±0.50a 0.84±0.08a 0.56±0.05a 0.56±0.06A 0.58±0.11A 0.54±0.03

Values with different superscript letters within a row were statistically different (P< 0.05) according to the Duncan test.
BBR: Brightest Brilliant Rainbow

The results further established that the environments in Uganda resulted in a better nutritional 
profile of the three quinoa genotypes. Soil pH was found to have influenced protein content of 
the seeds whereby high pH corresponded with low protein content, which was the case for Mount 
Makulu in Zambia. The study results also showed correlations of high soil nitrogen status with high 
protein content in the grain and likewise high-altitude sites had high protein content in the grains. 
The implication of these results is that where soils are low in nitrogen status, application of nitrogen 
fertilizers will be a requirement. Where soil pH is high, soil amendments to lower the pH may be 
required that significantly increase protein content in the grain (Table 17). The levels of different types 
of amino acids were found to vary among the genotypes and sites. Selection of quinoa genotypes for 
specific environments therefore needs to consider the nutritional content of the genotypes.

4.4 Quinoa awareness and promotion

Activities to promote quinoa were conducted in Kenya and Uganda. In Kenya, three workshops 
were held at KALRO in Embu, with participants from six counties. A sensitization event was also 
conducted at a farmers’ agricultural show, where 46 subjects (17 male and 29 female) assessed the 
suitability of quinoa incorporation into five common dishes – quinoa porridge, composite products 
of wheat and quinoa pastries (chapati and mandazi), maize and quinoa flour to make stiff porridge 
(ugali) and boiled quinoa grains. After assessing the recipes using a nine-point hedonic scale, over 
80 percent of the subjects ranked four recipes (porridge, chapati, mandazi and ugali) as acceptable, 
while 50 percent slightly liked or disliked boiled quinoa grains. In Uganda, the quinoa trials were 
used as demonstration and training plots for Bachelor of Science in Agriculture intern students from 
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Makerere University who got acquainted with the crop through participating in thinning, weeding 
and mulching of the crop.

Activities to raise awareness about quinoa and promote its use in Malawi included presentations of 
research findings at various national conferences and meetings as well as special stakeholder workshops 
for the TLC and LUANAR quinoa projects. In 2015 and 2016, women groups in two districts of 
Dowa (in Nalunga EPA) and Nkhotakota (Nkhunga EPA) were organized into nutritional groups for 
training sessions in the preparation of quinoa grain for various products. In Nkhunga EPA, a group 
of more than 10 women participated in quinoa growing for nutritional purposes. The communities 
have reached an understanding that quinoa has the potential to provide nutritious supplement in 
diets of children and mothers who are more vulnerable to food and nutritional insecurity. Nutrient 
composition analyses of the grain and leaf conducted by LUANAR have shown nutrient values (i.e. 
protein and minerals) as high as those reported from traditional quinoa growing areas.

To facilitate dissemination of quinoa in the farming communities, seed of the two best-performing 
varieties in each of the six EPAs in Malawi was supplied to 10 or more farmers for household growing 
and consumption. This resulted in 220 more households participating in quinoa growing, thereby 
extending the awareness of this nutritious grain crop. 

Farmers, especially the women, have discovered that the leaf provides a tasty cooked vegetable 
meal. Women groups participating in nutrition programmes of Nkhunga and Nalunga EPAs have 
embraced the quinoa leaf vegetable in their diets and prefer this to other local leafy vegetables such as 
Amaranthus. Quinoa leaves do not have a bitter taste when cooked, unlike some Amaranthus types. 
This has further piqued the interest in planting quinoa not only for grain but also as a vegetable.  The 
leaf is a source of ash, protein, iron and zinc (Mwangwela, 2015, of LUANAR, unpublished).

The International Year of Quinoa (IYQ) in 2013 highlighted quinoa’s potential to change its status 
from a minor to a major crop in world agriculture based on the role that its biodiversity and high 
nutritional value can play in providing global food security. Faced with the challenge of increasing 
the production of quality food to feed the world’s population within the context of climate change, 
quinoa offers an alternative for many countries suffering from food insecurity. The drive to expand 
the culture of quinoa did not end after 2013, and more than 26 new countries were looking forward to 
experimenting with it in 2014/15. The multiplication and spread of experimental stations are directly 
linked to major international research initiatives. The number of quinoa research centres is increasing 
worldwide. In parallel, the number of researchers working on quinoa is expanding, even in regions such 
as Eastern Europe or Central America which are not yet producing quinoa. However, the traditional 
producers of quinoa are still the main countries to conduct research. 

It is evident that there are still big knowledge gaps in Africa, for example. These need to be 
addressed to increase the chances of its introduction and development in Africa. There is an imbalance 
in technology access between North and South Africa. For the IYQ2013, the coordination of a book 
called ‘State of the art report on quinoa around the world in 2013’ assisted in reviewing all the available 
knowledge on quinoa compiled by more than 160 co-authors in 43 book chapters (Bazile et al., 2015). 
But this was not enough, and the Global Collaborative Network on Quinoa (GCN-Quinoa.org) was 
developed to serve as a tool for fostering the development of inclusive, respectful, responsible and 
ethical quinoa programmes and projects across the world. The global dimension of this initiative is of 
high importance to connect Andean countries to new country producers in order to avoid conflicts 
by generating greater mutual understanding and partnerships. The network’s four main objectives are:

-  To create a global collaborative network on quinoa to support the co-development and exchange 
of technologies to multiple stakeholders responding to specific needs in developing countries, 
especially for food security;

-  To promote access to a wide range of technologies considering not only information sharing 
but also capacity building for conservation, characterization, evaluation and sustainable use of 
quinoa’s GR;

-  To support South-South Cooperation as a tool for technical assistance between countries through 
partnership mechanisms for collaboration and mutual support; and
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-  To facilitate the emergence of the Andean Quinoa Farmers Network (Argentina, Bolivia, Chile, 
Ecuador and Peru) for establishing strategic linkages between farmers’ and researchers’ networks 
(RAPQUINUA and GCN-QUINOA) in order to develop a common participatory research 
agenda.

The network initiated by Dr Didier Bazile of the French Agricultural Research Centre for International 
Development (CIRAD) has connected all the participants of the FAO–TCP programmes. A consultant 
was contracted for contributing to the design of the participatory website and the web domain was 
registered (http://gcn-quinoa.org/). Now, the GCN-Quinoa links 279 members from all around the 
world (more than 70 countries).
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5. Institutional considerations

The various projects that have been conducted to introduce and promote quinoa in Africa show the 
need for several institutional considerations to be made for the initiative to be successful at local, 
national and regional level. These considerations include and pertain to:

5.1 Acquisition of quinoa germplasm

Engagement of international organizations like FAO and CIAT proved to be an effective way of acquiring 
quinoa germplasm for introduction to African regions. The Andean countries were more willing to 
share their germplasm with other countries with a trusted organization like FAO coordinating the 
acquisition of the germplasm. If African countries are to acquire more germplasm from the Andean 
countries for further introductions and adaptation studies, it may be easier to do it as a group through 
the negotiating power of the FAO. However, time was lost in the process of shipment and the time it 
took to distribute the seed to the respective country institutions, which led to loss of seed viability 
by the time countries received the seed. Requesting the donor of the germplasm to ship the seed 
directly to specific countries would minimize such seed viability problems. This was evidenced by the 
experience of countries that acquired the germplasm through other research collaborators as was the 
case with Malawi or with earlier studies in Ethiopia and Kenya. These countries did not experience 
the poor seed germination reported in the recent trials.

5.2 Institutional mandate and quinoa research

The approach of engaging national public research institutions to introduce quinoa has the advantage of 
gaining public trust in the new technology. The national agricultural research institutions (NARIs) are 
all under ministries of agriculture and have a well-established network of research station infrastructure 
and personnel across the ecological zones of these countries. Multi-locational trials were therefore easily 
organized in Ethiopia, Kenya, Uganda and Zambia. The NARIs’ strengths also include availability 
of multidisciplinary expertise in agricultural research such as plant breeders, agronomists, plant 
pathologists, as well as experts in food processing and human nutrition that facilitates the coordination 
of quinoa introduction and promotion. The engagement of CIAT in this regional quinoa project brought 
CGIAR research expertise and experience into quinoa research in breeding and human nutrition that 
have played a critical role in the formulation of the strategy that needs to be embraced as the region 
adopts quinoa. CIAT efficiently coordinated the technical processes including germplasm distribution, 
soil sample and seed nutrient composition analyses, data analyses and regional report writing. 

The spectrum of institutions involved in quinoa research, production and utilization at national 
levels needs to include public sector development agencies and agricultural research institutes, non-
governmental organizations, public and private universities and corporations, with each contributing 
different perspectives, strengths and resources to help meet the challenge. NARIs provide advice to 
local farmers, diffusing the new knowledge into the country’s agriculture system. In the current case of 
countries (Ethiopia, Kenya and Zambia) where quinoa was evaluated, the national agricultural research 
institutions of ministries of agriculture were the leading institutions, with the exception of Malawi 
where an agricultural university (i.e. LUANAR) took the lead. It is expected that the involvement 
of NARIs in introducing quinoa in most developing countries will be more effective in accelerating 
adoption of the new crop by farming communities. Where possible, the research institutions should 
engage partner institutions or organizations for the full duration of projects so as to share the full 
extent of the expertise and knowledge involved, rather than engagement in one-way or one-time 
transfer of the technology.
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5.3 Institutional capacity building to conduct quinoa research  

Quinoa being a new crop on the continent, there is limited human capacity with knowledge and 
expertise to conduct quinoa research without prior training to acquaint researchers with the crop. 
Although quinoa is similar to Amaranthus, which is a familiar crop in Africa, it has phenological and 
physiological differences and pests and diseases that would affect its successful introduction. Training 
of researchers to be engaged in quinoa experiments is required so that agronomic practices can be 
applied at the appropriate stage of the crop and so that the crop can be harvested at the right stage to 
minimize shatter loss and soil contaminants. There is also a need to build capacity in threshing and 
postharvest handling of the seed. 

While most of the participating countries had human resource capacity to conduct the quinoa 
research, some of them did not have the technical capacity, or had limited capacity at the Ministry 
of Agriculture (MoA) level. In Somalia, there was a coordinated effort between FAO and the MoA 
to set the trials in a conducive environment. FAO trained the MoA on how to implement the trials 
and to ensure that protocols were properly followed and trials implemented in the standardized 
conditions. An expert agronomist based in the area of implementation of the trials was recruited by 
FAO to ensure proper daily follow up on the process. However, staffing changes within the MoA of 
Somalia made it difficult for the expert to coordinate the quinoa trials in the country, and hence no 
data were generated on these quinoa trials.  

5.4 Universities – academic research

Engagement of agricultural universities in quinoa research provided judicious use of trained human 
resources, infrastructure and other resources emanating from the universities’ role of teaching, research 
and outreach. In the short term, short training courses can be organized for the researchers while 
in case of long-term capacity building, universities (LUANAR and Jomo Kenyatta) are engaging 
undergraduate and postgraduate research projects. The universities are assisting in developing both 
new emerging crops and orphan crops, promoting successful agriculture for marginal ecological 
conditions and tackling small-scale technological problems. Such work accounts for much of the 
research conducted by local institutions and needs to be strengthened. The collaboration demonstrated 
in this research work suggests the need for local institutions to provide incentives for their staff to 
collaborate with international researchers and seek synergies with research done elsewhere. The 
CGIAR centres such as CIAT played an important role in helping to integrate local efforts with the 
knowledge available worldwide.

5.5 Non-governmental organizations

Partnerships with non-governmental organizations that are engaged in development projects with 
farming communities appear to accelerate adoption of quinoa by the farmers, as in the case of Total 
Land Care (TLC) in Malawi which partnered with LUANAR to conduct on-farm studies of quinoa 
with the farming communities in its impact area. As the farming communities had already established 
trust in TLC they readily agreed to host the trials.
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6. Policy considerations

Quinoa is alien to Africa and its introduction requires supporting policies by governments to integrate 
new crops into their agriculture and food systems. Many rural populations in Eastern and Southern 
Africa are heavily dependent on a few crops such as maize (Zea mays L.), rice (Oryza sativa L.) and 
wheat (Triticum aestivum L. em. Thell.). Limited to specific cultural groups are many ‘orphan’ or 
underutilized crops of regional or local importance for nutrition and income. Many agricultural 
policies in these countries are encouraging research and promotion of indigenous and locally adapted 
crops for food security. Encouraging research by scientists, accessing funding for quinoa studies and 
utilizating quinoa as a global emerging crop need to be integrated in the crop production policies. 

Seed multiplication for released varieties of quinoa will require proper regulation just like the 
traditional major food crops to ensure maintenance of high seed quality. Quinoa is a self-pollinated 
crop with about 10 to 15 percent (and sometimes up to 30 percent) cross-pollination, which could 
be responsible for the off-types observed in some of the varieties tested in the seven Eastern African 
countries and in Malawi. Countries need to review or check if their current policies and regulations 
that cover the other traditional self-pollinated crops can adequately regulate seed multiplication and 
maintenance of commercialized varieties of quinoa. African countries may have to learn from the 
countries where quinoa has been commercialized for a long time such as the Andean region. Success 
in the promotion of quinoa will depend on the effective regulation of the seed system in order to 
ensure farmers’ access to quality seeds of varieties that meet their production, consumption and 
marketing conditions. Access implies affordability, availability of a range of appropriate varietal 
seed and possessing information about the adaptation of the variety. It is important to recognize that 
most small-scale farmers in developing countries obtain seed from the informal seed sector, which 
provides traditional farmer-bred varieties and saved seeds of improved varieties. The majority of 
small-scale farmers are likely to save and recycle their own seed unless they appreciate the benefits of 
using certified seed of quinoa. Such benefits need to be included in the awareness programme at the 
early stages of quinoa promotion.

Quinoa was primarily introduced into Africa to benefit the diets of the rural African population. 
However, the growing demand for quinoa in developed countries may turn quinoa into another purely 
commercial crop like tobacco if its production and export to international markets are not regulated. 
The African farmers may end up being producers of the grain to supply developed countries while the 
local farming communities continue to depend solely on their indigenous crops for their diets, even 
though the quinoa crop has a high nutritional value for the local population. This was clearly observed 
to be an important issue during the closing workshop (January 2016) of the FAO-supported quinoa 
pilot trials in Addis Ababa. Policies or regulations that can promote domestic utilization of quinoa 
may be required to guide the agro-processors. Others argue that if small-scale farmers can realize 
improved economic status out of exporting quinoa, then this will be translated into improved diets. 
A challenge in past experiences has been that the benefits of an export crop do not proportionally 
trickle down to the farmers.

Quinoa has been reputed to perform well even in marginal environments, an advantage governments 
can use to promote its production in ecological zones where the traditional staple food crops do 
not perform well. Quinoa needs to be included among the food crops being promoted for marginal 
environments and climate change adaptation.

Increased funding will be required for research and promotion of crops like quinoa that are 
candidates in adapting to climate change. The potential of the quinoa crop to help farmers adapt to 
climate change impacts may not be realized unless governments allocate more funds to research and 
development of the crop for sustainable funding rather than depend solely on donor grants for research.   
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7. Lessons from the successes and 
challenges

Several lessons that include both successes and challenges can be drawn from the quinoa trials conducted 
so far (particularly from the Eastern and Southern African countries).

7.1 Successes

7.1.1 Awareness among public and non-governmental institutions

The quinoa introductions and pilot evaluation trials generated awareness among both the public 
research institutions and universities and the non-governmental organizations working with farming 
communities and those promoting improvement of diets. Researchers in NARIs and universities that 
conducted the trials engaged stakeholders from government, non-governmental institutions, farming 
communities and the media in planning meetings, workshops and field days. Interest in quinoa has 
grown significantly because of its nutritional superiority and wide environmental adaptation. It shows 
excellent adaptability, is able to produce in unfavourable soil and climatic conditions and has high 
nutritional value – it contains high levels of protein, is rich in vitamins and minerals, and is gluten-free.

Many people and organizations feel that with the increasing world population, more attention should 
be paid to major world cereals in order to feed people. This may be the case for productive areas, but 
not for marginal and degraded ones where minor cereals and pseudocereals are more adaptive and 
higher yielding (Williams, 1995). Quinoa is suited to such areas, especially in view of climate change. 
The effects of climate change are well-known and include increased temperatures, high-altitude and 
high-latitude areas more prone to warming, prolonged drought in arid and semi-arid regions, increased 
flooding, extreme weather events and rising sea level. Overall, the climate is changing faster than 
species are able to adapt, making quinoa one of the best options.

7.1.2 Plant growth and yield

Results from the evaluation trials conducted so far in Ethiopia, Kenya, Malawi, Zambia and Uganda 
have demonstrated that quinoa can be grown successfully in the various ecological environments of 
the region (Mukankusi et al., 2016). The nutritional composition of the seed was shown to vary with 
the environment (particularly soil fertility) (Lung’aho et al., 2020 (in review)), but remained within 
the range of nutritional composition of quinoa grown elsewhere. Some of the 16 introduced genotypes 
such as Amarilla Maranganí, Brightest Brilliant Rainbow, Cherry Vanilla, Titicaca and Multi-Hued 
can be selected for specific environments for production and utilization. What is further required is to 
evaluate these genotypes over different seasons and in additional sites to validate their performance.   

7.1.3 National quinoa research capacity

The FAO-TCP-funded quinoa project succeeded in bringing germplasm of six genotypes (Table 6) 
from Bolivia. It also succeeded in building the capacity of the seven countries participating in the 
project through training workshops and financial resources that enabled the national research teams 
to implement the trials. The trials also served as nurseries for seed multiplication of the introduced 
varieties that can be used for further trials. The scientists involved gained experience in quinoa crop 
production from the pilot evaluation trials under their local conditions.

7.1.4 Quinoa research network

A network of researchers on quinoa was established among the NARIs’ research teams, providing 
a platform for sharing of information on quinoa research in the region and with other international 
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scientists. The network served as a formal collaboration mechanism for quinoa development in the 
region, with membership comprising the seven countries participating in the FAO-TCP project as 
well as FAO and CIAT. The network encouraged sharing of germplasm for the mutual benefit of 
member countries and served as a platform for knowledge and information exchange. An extension of 
this project is expected to seek development and promotion of a regional programme on quinoa that 
addresses both nutrition and gender equity; sharing of responsibility for the development of quinoa in 
the region by providing a pool of institutional, human and technological capacity for quinoa research 
for development (R4D); use of advocacy, policy dialogue and communication approaches to convey 
evidence-based information on quinoa and, where possible, to support and promote collaboration 
and coordination of quinoa R4D activities.

7.2 Challenges

Several challenges were encountered during the early stages of quinoa introduction in Africa. Abiotic 
and logistical challenges, institutional and policy issues that affected implementation of the trials 
are discussed and refer to all seven countries (thus adding Djibouti, Somalia and South Sudan where 
introduction was attempted) in several respects.

7.2.1 Acquisition of quinoa germplasm from the Andean countries

Acquisition of germplasm from the Andean countries was challenged by delays attributed to logistics 
in the delivery of seed, more specifically from Peru, which took a long time to reach the participating 
countries and the experimental sites. For instance, in some cases it took up to eight months for seed 
from Peru to reach participating countries. Monitoring of seed quality and storage conditions within 
transit was not assured and consequently the seed lost viability while in transit.  Future acquisition 
of more varieties may work better if the seed is first multiplied in each country and fresh seed is used 
for further experimentation. The planting of the seed whose viability was questionable resulted in 
variable plant populations in experimental plots. 

7.2.2 Poor seed quality

Germination and establishment were major problems faced in all the experimental sites. Poor seed 
germination or complete germination failure was reported, particularly among the seeds from Peru. 
This was attributed to the long transit period during which proper seed handling was not assured. In 
contrast, seed from Malawi showed a better germination percentage. Seed testing for viability needs 
to be conducted for germplasm acquired from elsewhere before sowing is done for an experimental 
trial. In most circumstances only small quantities of germplasm seed are shared and seed multiplication 
prior to setting up trials would ensure that rejuvenated seed with high quality is used for trial sowings 
and minimized variation in plant densities.

7.2.3 Lack of experience in quinoa crop management

Challenges associated with crop management that were reported from almost all sites included plant 
lodging, sprouting of seed at physiological maturity and incidences of pests and diseases. Incidences 
of plant lodging were experienced from flowering to maturity stage, which was worse when the plants 
grew very tall and under rainfed conditions attributed to accumulation of water in the inflorescence. 
In the case of pre-harvest sprouting of seed, it occurs when physiologically mature plants are exposed 
to prolonged wet conditions. This is common when the maturity period coincides with periods of 
rain. Water accumulates within the inflorescence, providing a favourable environment for sprouting. 
Large, open inflorescences dry more quickly after the rains or dew than small compact ones (Jacobsen, 
1997). Lodging incidence exacerbates sprouting as plant panicles tend to fall to the ground where soil 
moisture is usually high. Lodging also increases the presence of soil particles in the seed or grain after 
threshing. Lodging could be managed by staking the plants, but this may not be feasible when dealing 
with large fields. Use of relatively short-statured plant varieties would be easier to manage. Close plant 
spacing could also be experimented with to check if it can be applied to reduce plant lodging. Sprouting 
is easily controlled when the crop is grown under irrigated conditions by withdrawing watering as 
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soon as the crop matures, but during a long rainy season it is difficult to minimize sprouting. Long-
duration varieties would have to be planted during long rainy seasons. Selection for sprout-resistant 
genotypes has been reported and this may be a preferable option for farmers.

Common pests observed were aphids and caterpillars, which are common in most horticultural 
crops. Diseases observed had symptoms of virus-like mottling and crinkling which could not be 
identified due to limited expertise of the research teams. There is a need to include plant protection 
expertise (entomologists and plant pathologists engaged or closely consulted) in quinoa trials.  

7.2.4 Unfavourable climatic conditions

Erratic weather challenged the performance of the quinoa trials. In some sites the crop’s sensitive 
growth stages, like emergence, coincided with hot dry weather and good plant establishment became 
difficult. Despite its wide adaptation from sea level to over 4 000 m.a.s.l. and in drought-prone regions, 
quinoa’s drought tolerance is not completely elastic. The crop needs some water applications during 
water-sensitive stages of growth and irrigation can significantly increase yields (Bosque Sanchez et 
al., 2003; Garcia et al., 2003). In some cases, there was too much rain battering the plantlets, which 
also resulted in poor establishment or sprouting. Mulching of the beds sown to quinoa up to two 
weeks after emergence has been tried in Malawi and found to reduce the impact of too much rain until 
plants are established, while it also helps to conserve moisture in the case of dry spells. Nevertheless, 
irrigated quinoa grain yields have been higher than under rainfed conditions (Maliro et al., 2017). 

7.2.5 Postharvest processing and handling

Challenges also emerged during harvesting and processing in the absence of mechanization. Varieties 
that experienced lodging problems had panicles carrying soil particles from the ground. There were 
problems separating the seed from debris-like soil particles due to small seed size, which is especially 
problematic in grain meant for consumption. Quinoa introduction studies and promotion efforts 
need to develop technologies that will improve the threshing methods and keep the seed/grain free of 
contaminants in both seed and grain for consumption. In Malawi a significant decline in viability of 
the quinoa seed was observed after six months of harvest (Nachipo, 2017) and therefore seed-drying 
and storage methods need to be studied as well as the shelf life of the seed before it loses viability.

7.2.6 Limited human and laboratory capacity

Capacity to conduct quinoa trials varies among the participating countries and technical assistance 
to be provided to these countries should consider their unique challenges. While many countries 
had limited capacity to implement the trials, Somalia had limited technical research capacity at the 
Ministry of Agriculture level due to the absence of NARIs, or research facilities with limited technical 
personnel to implement the trials. This was attributed to Somalia’s long history of political instability 
and insecurity that impacted on the existence of its government structures. Consequently, there were 
efforts to change the focal point for the quinoa project, but this came too late for the trials to be 
conducted within the project period. At the time the project ended, Somalia still had to conduct the 
trials. In South Sudan there was insecurity in some sites which made it difficult to reach the sites in 
time for soil sampling and trial implementation. In Zambia the trials were conducted under irrigated 
conditions during the dry season and during the plant growth period the sites encountered irrigation 
difficulties due to power outages which affected regular irrigation schedules.

Some of the countries like Djibouti did not provide soil analysis data, thereby limiting the comparison 
of results from sites of different countries to soil characteristics. Djibouti was also uniquely positioned 
in that it does not have enough land space for agricultural production of the traditional field crops and 
it was anticipated that if quinoa gave promising results, it would provide an opportunity for domestic 
food crop production. 

Lessons from successes and challenges   41



©
 F

A
O



8. Conclusions

The data generated by the trials in the African countries have demonstrated that quinoa production 
is possible. It is no longer a question of whether quinoa can grow and yield enough seed/grain to 
warrant its production, but how quinoa can be introduced and integrated into the African food 
systems. Several technological, institutional and policy considerations need to be made to facilitate 
introduction and adoption of quinoa in farming communities of different agro-ecological areas of 
Africa and promote its utilization.  
8.1  The exploratory trials showed that genotypes evaluated vary in their plant-growth and grain-

yield performance across different environments. For quinoa production to be possible across 
different ecological zones, local varieties adapted to specific ecological regions or zones need 
to be selected under these environmental constraints. Quinoa yields as high as those realized 
in traditional production areas of quinoa are possible. There are also some genotypes whose 
protein content and quality (amino acids) vary with soil nutrient status across environments.

8.2  Low seed viability constrained plant establishment in all sites of the evaluation trials under the 
FAO-TCP project. Quality of seed will therefore be a key factor for successful adaptation trials 
of quinoa as well as for promotion of the crop.

8.3 Variation in soil nutrient status was one of the factors that affected variation in quinoa performance 
across environments. Fertilizer requirements need to take soil nutrient status in each environment 
into consideration.

8.4  There are biotic stresses that include insect pests (particularly aphids and caterpillars), diseases 
(affecting the leaves) and moulds. However, diseases appear not to be a major constraint to 
quinoa production. While quinoa displays wide environmental adaptation, abiotic stresses such 
as droughts and soil factors like pH have an impact on its production.

8.5 Due to the physiological nature of quinoa seed, i.e. size and lack of dormancy, it needs proper 
processing to minimize contaminants and manage storage conditions after harvest.

8.6  The adaptation trials that have been conducted in the past in Ethiopia, Kenya and Malawi 
and the recent FAO-TCP project have created capacity for the African region to drive quinoa 
introduction and promotion on the continent. The researchers who were engaged in the trials 
represent the human capacity that is now knowledgeable and experienced in quinoa growing 
to some degree. 

8.7  National agricultural research institutes (NARIs) already have a network of research infrastructure 
in place across agro-ecological zones in most of the countries, making them well-positioned 
institutions for quinoa introduction and promotion. Agricultural universities such as LUANAR 
in Malawi played an equally important role to introduce quinoa and conduct adaptability and 
on-farm studies. Non-governmental organizations that are working with farming communities 
as well as women on nutrition programmes became effective partners in the promotion of quinoa 
production and utilization, as was the case with TLC and LUANAR in Malawi.

8.8  Awareness creation about quinoa as a food crop with high potential to contribute to national 
food and nutrition security has started and needs to continue among policy-makers and the 
public in countries that participated in the project.

8.9  A regional approach to introducing quinoa has been effective as it provided a platform for 
sharing information and experience that would not otherwise have been possible. This regional 
platform needs to link to international experiences for sharing results and lessons learned among 
all participants. The Global Collaborative Network on Quinoa (GCN-quinoa.org) is a good 
option for developing that kind of collaboration and for exchanging human resources among 
institutions at a global level.
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8.10  Engagement of stakeholder institutions at the early stages of quinoa introduction increased 
awareness in most of the participating countries in Eastern Africa and Malawi. Farmers in Malawi 
appreciated the importance of quinoa grain and explored the use of the leaves as a vegetable.

8.11  In most countries, especially developing countries, agricultural research and production policies 
emphasize a few major cereal and legume crops for food security, while many indigenous food 
crops that have played an important nutritional security role in the farming households over 
the past centuries have been neglected by research and extension. Policy-makers can easily view 
quinoa as one of such ‘orphan’ or neglected crops if proper awareness is not created. 
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9. Recommendations

Many recommendations could be made based on the lessons learned during the early quinoa trials in 
Ethiopia, Kenya and Malawi and those championed by the FAO-TCP quinoa project in 2015. Broad 
and specific recommendations put forward include:
9.1  The need for further testing of the genotypes in the seven countries as data generated so far 

are from a single season with the exception of Ethiopia and Malawi. Several gaps (seed quality, 
pathology, physiology, agronomy and genetics) remain for the researchers to understand 
quinoa as a potential crop for introduction into the African food systems. Expertise needs to 
be engaged to address the research gaps as multilocational trials extend to other agro-ecological 
zones. Making conclusions on the agronomic performance of quinoa in the region based on one 
season’s data is not adequate and ideally three seasons’ data will be required to reach concrete 
conclusions. Due to their interest in quinoa crops, a number of countries have proceeded to 
establish trials in more sites in the second season to cover the major agro-ecological zones (i.e. 
Kenya and Uganda). This should be encouraged for all participating countries. 

9.2  Seed multiplication of the varieties or genotypes for the trials needs to be maintained at national 
or regional level to reduce challenges of low viability and genetic purity. Studies on storage 
conditions for quinoa seed shelf life are needed to understand the challenges associated with 
viability and pre-harvest sprouting of quinoa.

9.3  Wide adaptation of quinoa is not absolute. Specific genotypes or varieties will have to be selected for 
specific marginal environments. i.e. genotypes well-adapted to arid, semi-arid and saline or acidic soil 
conditions.

9.4  Fertilizer requirements for quinoa production need to be based on soil nutrient status to achieve 
the potential grain yield levels and nutrients (protein, amino acids and minerals) in the grain.

9.5  There is a need for capacity building of both scientists and technicians in quinoa crop research, 
which can take the form of short training courses or visits to countries that have had more 
experience with quinoa research in the region or to the Andean countries. Training in the use 
of the quinoa descriptors is required as well as in the improvement of the existing descriptors to 
make them more user-friendly. Training in data collection, curation and analysis is required by 
some members of the quinoa consortium. Support for undergraduate and postgraduate research 
on quinoa crop (agronomic and utilization) needs to be included for sustainability of the quinoa 
‘revolution’ in Africa. A specific curriculum could be developed (Bazile et al., 2015), using the 
contents of Bazile and Bertero’s state-of-the-art report on quinoa and their experiences for 
adapting the curriculum to East African contexts.

9.6  NARIs and agricultural universities should continue to lead the quinoa research in close 
partnership with farmers’ organizations and NGOs that are working with farming communities. 

9.7  There is more to be done to create awareness of quinoa as a health food. Engagement with 
policy-makers as well as other technocrats and the public needs to be intensified to influence 
adoption and utilization of quinoa to improve food and nutritional security.

9.8  The regional quinoa research network that is championed by FAO should continue to be 
supported to serve as a platform for the exchange of information and discussion among various 
stakeholders in the region. This regional platform needs to be connected to international 
experiences to enable global stakeholders to share results and learn from each other. The Global 
Collaborative Network on Quinoa (GCN-quinoa.org) is a good option for developing that kind 
of collaboration and for exchanging human resources among institutions at a global level.

9.9  National agricultural research and production policies need to accommodate funding and 
promotion of global emerging crops like quinoa so that national research scientists can have 
funding opportunities to develop varieties that will meet specific domestic and export needs.
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