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The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial
therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted
therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form
new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular
biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant
traditional broad-spectrumantibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate
targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the
development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of
molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform
technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery
channels.

© 2016 Published by Elsevier B.V.
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1. Introduction

The growing prevalence of antibiotic-resistant pathogens calls for
the development of a new generation of antimicrobial therapies,
diagnostics, and discovery platforms. The Centers for Disease Control
and Prevention (CDC) reports that the rise of antibiotic resistance has
become a public health crisis, leading to over 2 million infections and
23,000 deaths per year in the United States alone [1]. Limited diagnostic
capabilities leave healthcare providers unable to precisely diagnose
clinical infections and administer effective treatments in a timely
manner. Furthermore, the use of broad-spectrum antibiotics clears out
microbial niches and enablesmicrobiome colonization by opportunistic
pathogens [2]. This threat hasmotivated efforts to reinvigorate antibiot-
ic research and streamline funding and approval processes for new ther-
apies [3]. However, the rapid transmission of antibiotic resistance
challenges our present ability to develop additional small-molecule
therapeutics, broad spectrum or otherwise [4]. Amidst this antibiotic
crisis, new research approaches are needed to progress the discovery
of novel antimicrobial treatments.

Synthetic biology is well positioned to address the challenges in
developing next-generation antimicrobial agents. By studying the de-
sign principles underlying native gene networks, synthetic biologists
have developed tools that enable the rational engineering of biological
systems [5,6]. Early efforts focused on the development of model tran-
scriptional networks to recapitulate and understand native gene regula-
tion [7–10]. These works advanced our ability to engineer complex
behavior such as memory encryption and oscillatory gene expression,
and catalyzed advancements in the rapid design and implementation
of synthetic gene networks [11–20]. The field has since moved towards
repurposing natural biological processes for tunable and targetable syn-
thetic gene regulation [21–25]. The innate biochemistry of microorgan-
isms has been harnessed in the biosynthesis of organic compounds,
such as the antimalarial drug artemisinin [26] and various opioids
[27]. Strides have also been made in engineering genetic networks for
direct clinical applications such as customized cancer treatments and
nonconventional cell therapies [28,29]. The extensive knowledge base
that has emerged from synthetic biology and its union with other
scientific fields, combined with the pressing need for next-generation
antimicrobials, has led to the creation of new methods to combat
Fig. 1. Engineered phages. (A) The evolved ability of phage to infect and replicate within a hos
induce the expression of heterologous constructs in a specific population of microbes for th
expression of bactericidal genes enables the utilization of phage as an antimicrobial therape
proteins, an engineered phage can facilitate bioluminescence that enables precise and sensitiv
novel antimicrobial peptides, essential gene targets, and synthetic biology parts.
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pathogen resistance. In this review, we highlight synthetic biology
platform technologies that can be utilized to produce novel antimicrobial
therapeutics and diagnostics.

2. Therapeutics

Current broad-spectrum antibiotic treatments often result in the
elimination of both pathogenic and commensal microorganisms. This
clearing out of microbial niches leads to iatrogenic infections such
as Clostridium difficile (C. difficile) and contributes to the increasing
prevalence of antibiotic-resistant microbes [30,31]. Synthetic biology
approaches have demonstrated potential in the development of
targeted therapies that improve on existing treatment schemes by
narrowing the antimicrobial target spectrum and providing spatiotem-
poral control over the delivery of therapeutic agents.

2.1. Bacteriophage-based therapeutics

One area of research that holds promise towards such applications is
that of bacteriophage-based therapeutics (Fig. 1A). Bacteriophages
(phages) are bacteria-specific viruses that insert their genetic informa-
tion into a host microbe upon infection, taking over essential cellular
functions and in some cases inducing microbial lysis [32]. Phages natu-
rally discriminate between microbial species within mixed populations
and bear great specificity toward their bacterial targets [33]. Shortly
after their discovery, phages were recognized for their potential to
combat bacterial infections, with the first generation of phage-based
treatments relying on the natural specificity and lytic action of wild-
type viruses [32,34,35]. Though their specificity presents an advantage
at face-value, a narrow targeting spectrum without equally specific di-
agnostics for identifying the infectious pathogen, aswell as the selection
of resistance to phages during phage-based treatments, fueled the
development of therapeutic cocktails that consisted of multiple phage
species, each with different targeting spectrums. However, with the
discovery of penicillin and other potent antibiotics, efforts to develop
phage-based therapies were largely abandoned.

As the efficacy of antibiotics threatens to continue its decline in
the face of growing resistance, interest in developing phage-based
therapeutics has regained traction. Genetic manipulation of phages
t microorganism has made them a popular technology platform. An engineered phage can
erapeutic and diagnostic applications. (B) Modifying the phage genome to include the
utic for specific microbial elimination. (C) By inducing microbial expression of reporter
e detection of a microorganism. (D) Mining phage biology can aid in the identification of
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has propelled their use as a valuable platform for targeted bacterial elim-
ination (Fig. 1B). Recent work has aimed to widen phage target range by
introducing genes that allow for replication in newbacterial hosts and by
re-engineering phage tail fibers to enable the infection of new targets
[36–43]. Recently, Ando et al. described a high-throughput method for
engineering novel phage specificity in amodularmanner. These synthet-
ic phages can be inexpensively and rapidly evaluated for clinical use, eas-
ing the path for regulatory approval and advancing the therapeutic
potential of phage-based treatments [34,44–46].

Genetic modifications have also been used to bolster phage antibac-
terial activity. For example, Lu et al. modified T7 phages to express a
biofilm-degrading enzyme, Dispersin B (DspB) [47]. With DspB's activ-
ity, each successive round of phage replication led to biofilm disruption
and diffusion of phage progeny through the biofilm matrix to promote
infection clearance. However, cytotoxic cellular components released
during bacterial lysis can lead to inflammation and deleterious immune
responses in vivo, motivating the exploration of alternative phage-based
methods for inducing microbial death [32,33,41,48,49]. Second-
generation phage therapeutics rely on non-lytic (lysogenic) phage and
non-replicating phage protein capsules (phagemids) to deliver gene
networks programmed to eliminate bacterial populations through
non-lytic means. Phage-delivered antibiotic-sensitizing factors de-
signed to render bacterial populations hyper-susceptible to standard
treatments have been developed as adjuvant therapies. For example,
lysogenic phages have been engineered to overexpress transcription
factors associated with repression of SOS response and DNA repair,
leading to increased antibiotic susceptibility in infected cells [50]. Lyso-
genic phages have also beenmodified to reverse antibiotic resistance by
inducing microbial expression of dominant-sensitive genes that lead to
antibiotic re-sensitization [51]. Additionally, phagemid-induced expres-
sion of small regulatory RNAs has been used to knock down the expres-
sion of resistance genes in order to recover antibiotic susceptibility [52].

Phage-delivered synthetic networks have also been utilized to di-
rectly kill bacteria without antibiotic co-treatment. In a recent example,
Krom et al. engineered phagemids to induce the expression of non-lytic
antimicrobial peptides (AMPs) and toxin proteins, leading to targeted
non-lytic bacterial death [53]. This system is modular, allowing for
rapid plasmid construction, AMP screening, andAMP expression tuning.
The platform's extensible design for testing new AMPs and its demon-
strated efficacy in vivo highlight recent advancements in phage-based
therapeutics and their potential for clinical applications [53,54].

There have also been advances in harnessing the CRISPR/Cas
(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR
associated genes) system for antimicrobial therapeutics [55]. Originally
identified as a component of the prokaryotic adaptive immune system
whereby the endonucleolytic Cas9 protein is guided to cleave foreign
DNA species by a guide RNA complex, CRISPR/Cas was soon recognized
for its potential to better enable targeted recombination of DNA [56–
61]. Since then, the CRISPR/Cas system has been broadly adopted as a
genome editing tool in a variety of host organisms [23,55,62–69].
CRISPR/Cas has also been used to eliminate select bacterial strains in
mixed populations, but delivery challenges have stymied the system's
development as a therapeutic agent [55,70]. These delivery constraints
were recently addressed by the exploitation of non-lytic phagemid-
mediated delivery. This approach utilized phagemid specificity to selec-
tively deliver a CRISPR-guided nuclease programmed to cleave antibiot-
ic resistance genes. Directed nuclease action prevented plasmid-borne
resistance in antibiotic-sensitive populations, while simultaneously
eliminating antibiotic-resistant microbes [71,72]. The efficacy of
phage-mediated CRISPR/Cas delivery has been demonstrated in both
Gram-positive and Gram-negative organisms, as well as in in vivo infec-
tion models, emphasizing the widespread applicability of this platform
technology.

Although phagemid-delivered CRISPR/Cas systems boast high
specificity andmultiplexed targeting capabilities, there is concern regard-
ing the potential emergence of phage-resistantmicrobial populations as a
Please cite this article as: D. Braff, et al., Synthetic biology platform techn
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result of phage treatment. Yosef et al. addressed this hurdle by using
lytic phage and CRISPR/Cas to induce a population-wide selective ad-
vantage for antibiotic-sensitive microbes [73]. Temperate phages were
used to deliver a CRISPR/Cas construct that both eliminated microbial
plasmids that bestowed antibiotic resistance and immunized target
bacteria against lytic phage infection. This tactic left CRISPR/Cas-
treated bacteria sensitive to antibioticswhile simultaneously conferring
an evolutionary advantage against lytic phage attack. Thus, antibiotic-
resistant cells could be efficiently eliminated by lytic phages while
antibiotic-sensitive populations were left to take over the microbial
niche, paving the way for efficacy of standard antibiotic therapies.

2.2. Synthetic probiotics as living therapeutics

The ability to engineer bacteria has enabled antimicrobial therapies
in the form of synthetic probiotics that can provide localized and
controlled release of targeted therapeutics under specific conditions,
such as the onset of an infection (Fig. 2A). Live attenuated pathogens
have long been utilized as vaccines, stimulating the host immune
system to produce relevant antibodies for long-term prophylaxis [74].
Improvements in genetic engineering methods have led to the creation
of recombinant bacteria for treatment and prevention of infectious
disease [75–77]. Early efforts consisted of engineering benign bacteria
to express heterologous antigens and evoke a host immune response
(Fig. 2B) [78–83]. In later iterations, non-pathogenic microbes were
modified to display toxin receptor-mimics that act as competitive inhib-
itors of pathogenic toxins [84–86]. Other approaches used engineered
probiotics to disrupt pathogen quorum sensing and prevent virulent
gene expression, demonstrating a generalizable method of interfering
with pathogen communication for antimicrobial purposes [87,88].
Additional advancements in probiotic-based therapeutics focused on
promoting long-term viability of recombinant bacteria by engineering
commensal species that would be expected to stably colonize themam-
malian host [87]. Prophylactics for human immunodeficiency virus
(HIV) were developed using this approach, by modifying Lactobacillus
and Escherichia coli (E. coli) species that naturally colonize the
cervicovaginal tract to secrete antiviral peptides [89–91].

Synthetic probiotics can also be engineered to colonize particular
niches by heterologous expression of localizing peptides. Such probiotics
convey prophylactic effects by outcompeting pathogens for ecological
niches and by employing conventional strategies for toxin inhibition
[92,93]. Targeted therapeutic delivery has also been achieved by
engineering an attenuated version of an otherwise pathogenic strain.
For example, the natural macrophage-homing mechanism of Salmonella
has been used to introduce antigenic peptides to immune cells for
prophylactic purposes, and for the delivery of ribozymes designed to
inhibit macrophage-specific viral infections, such as cytomegalovirus
[94–97]. The employment of attenuated Salmonella in vaccine delivery
has promising commercialization potential and is currently the basis of
several clinical trials [98,99].

There is also interest in developing autonomous probiotics that are
able to sense particular pathogens and respond by expressing targeted
antitoxins or antimicrobial agents (Fig. 2C). Saeidi et al. engineered
E. coli to sense Pseudomonas aeruginosa's quorum sensing molecule and
respond with self-lysis to prompt the release of a narrow-spectrum
antimicrobial agent [100]. Similarly, Lactococcus lactis was designed to
respond to an Enterococcus faecalis sex pheromone with the secretion
of a suite of AMPs [101]. These efforts provide platforms for the future
development of synthetic probiotics that provide long-termprophylactic
and therapeutic benefits.

However, challenges remain in translating engineered probiotics to
clinical applications. Stable long-term colonization of a therapeutic probi-
otic in amicrobial niche has proven difficult to achievewith standard lab-
oratory strains, motivating the domestication and study of commensal
microorganisms that can be used for this purpose [102]. Additionally,
engineering the robust function of synthetic gene networks is challenging
ologies for antimicrobial applications, Adv. Drug Deliv. Rev. (2016),
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Fig. 2. Synthetic probiotics. (A) Engineered microorganisms can be deployed in vivo to provide prophylactic, therapeutic, and diagnostic benefits. (B) By engineering the secretion of
antigenic factors, a non-pathogenic microbe can be used to safely induce a protective host immune response to a particular pathogen. (C) Autonomous therapeutic probiotics that
sense and respond to the presence of a pathogen have enabled the targeted killing of infectious microbes. (D) By modifying probiotic microbes to express synthetic gene circuits that
facilitate cellular memory, probiotics can be used to persistently monitor the host and report on the presence of a molecule or signal of interest.
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in the face of in vivo environmental pressures. Efforts to create and study
syntheticmicroconsortiamay be useful in gaining perspective on dynam-
ic in vivo environments and advances in gene network engineering may
facilitate the robust function of therapeutic circuitry [103,104].

Another concern associated with the use of living, genetically
engineeredmicroorganisms is their potential for proliferation in natural
environments [105]. Early approaches to biological containment
involved engineering auxotrophy via essential gene knockouts which
render the host incapable of replication in the absence of essential
metabolites, and inducing microbial death by controlled expression of
lethal genes [106–109]. Building on these efforts, Chan et al. developed
genetic Deadman and Passcode networks that allow for tightly con-
trolled and programmable cellular killing [110]. The Deadman circuit
utilizes unbalanced reciprocal repression networks to control expres-
sion of a toxin protein that induces host death only in the absence of
an exogenous ligand. By coupling this circuit with a network of hybrid
transcription factors, the authors were able to induce microbial death
in response to the simultaneous presence of up to four exogenous
ligands. These safeguard systems efficiently kill engineered microbes
Please cite this article as: D. Braff, et al., Synthetic biology platform techn
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upon either exposure to a small molecule or expulsion of the microbes
from the patient's body.

3. Diagnostics

The societal and monetary costs associated with the lack of effective
diagnostic measures calls for improved antimicrobial testing capabilities
[2,3]. Clinically tractable diagnostics must be low-cost, rapid, sensitive,
easy to use, and adaptable to new targets. With their rational design,
synthetic biology platform technologies hold promise for diagnostic
technologies that can address these needs.

3.1. Bacteriophage-based diagnostics

Phages are ideal vectors for diagnostic applications due to their
highly specific targeting capabilities [111,112]. Early phage diagnostics
took the form of plaque-assays that identified bacteria based on their
clearance by known phage species [34,111–113]. With time, phage-
based diagnostics evolved to rely on genetic modifications to enhance
ologies for antimicrobial applications, Adv. Drug Deliv. Rev. (2016),
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signal amplification and shorten the time required to obtain a readable
output [33]. Phage-infection markers have taken the form of standard
fluorescent, bioluminescent, and colorimetric readouts (Fig. 1C)
[112–117]. In other approaches, external phage proteins have been
genetically modified to allow for detection through auxiliary methods.
In a demonstration of this methodology, Edgar et al. engineered phages
to express a biotinylated capsid protein for direct detection by
streptavidin-coated quantum dots, allowing identification of as few as
ten bacterial cells per milliliter in one hour [118]. While modern-day
clinical use of phage-based therapeutics has been dampened by strict
regulatory requirements, commercial diagnostic applications of phages
have had considerable success, with several such platforms available for
use in laboratory and food-industry settings [33,34,111,119].
3.2. Cell-free and paper-based platforms

Althoughphages are suitable for awide range of extracellular diagnos-
tics, other biologically-based diagnostic platforms are less tractable
in vitro. Progress in synthetic biology has led to improved circuit-
building abilities and a large collection of RNAandDNA sensors; however,
these technologies fundamentally require transcription and translation,
limiting their applicability to cellular contexts [21,22,120,121]. In vitro
cell free expression systems that contain transcription and translation
machinery provide the environment necessary for biologically-based
technologies to function independently of living cells [122]. Originally
utilized for in vitro protein expression, cell free expression systems have
recently been recognized for their ability to support more complicated
gene networks [123–126]. Synthetic gene circuits have been shown to
operate well within these systems, often with the added benefit of re-
duced cross-talk andminimal off-target effects. Further, the more precise
control of conditions offered by in vitro expression systems has enabled
the high-throughput tuning of synthetic constructs [123,124,127,128].
Despite these advancements, the application of cell-free methods has
been limited to laboratory settings due to strict storage requirements,
including the need for refrigeration.
Fig. 3. Paper-based diagnostics. Paper-based diagnostics enable the widespread use of synt
synthetic gene network designed to detect clinically relevant signals are spotted on to a pape
can be assayed for diagnostic relevance. (B) Freeze-dried expression systems facilitate the ope
diagnostics in a low-cost and tractable manner.

Please cite this article as: D. Braff, et al., Synthetic biology platform techn
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To mitigate these constraints, Pardee et al. recently developed a
paper-based system for cell-free gene expression, providing a simple
platform for the real-world application of engineered genetic systems.
(Fig. 3) [129]. This paper-based technology utilizes cell-free extracts
freeze-dried on paper and other porous substrates to allow for long-
term preservation of synthetic circuits at room temperature. In a note-
worthy demonstration, RNA toehold switch sensorswere used to develop
a paper-based colorimetric diagnostic that was able to rapidly detect and
distinguish between the Sudan and Zaire Ebola strains from the 2014
outbreak [22,129,130]. The paper-based system has also been shown to
integrate well with non-RNA sensor modalities such as ligand-inducible
promoters and FRET-based nanosensors, and to allow for complex circuit-
ry that encodesmolecular-based logic. This platform is primed for antimi-
crobial diagnostic development and represents a scalable, cost-effective
technology that is sensitive, easy to use, and compatible with synthetic
biology tools.

3.3. Synthetic probiotics as living diagnostics

Although most diagnostics have been developed for in vitro use,
there has been a recent push toward the development of in vivo living
diagnostic platforms. Much like therapeutic probiotics that secrete anti-
microbial agents upon pathogen detection, diagnostic bacteria could
persistently monitor the microbiome for a particular cue and respond
with reporter expression. One key difference between therapeutic and
diagnostic probiotics is the fundamental need for the latter to encode
long-term synthetic memory. A memory device ensures that the diag-
nostic microbe will “remember” transient environmental events even
after the trigger has disappeared andwill convey accurate diagnostic in-
formation over the course of multiple cellular generations (Fig. 2D).
Early efforts to engineer genetic memory focused on the creation of
bistable toggle switches that flipped between two protein expression
states in response to exogenous inducers [7] and native cellular
networks such as the SOS signaling pathway responding to DNA
damage [131]. More recently, efforts to engineer biological memory
transitioned to the use of DNA modification in order to overcome
hetic gene constructs in clinical applications. (A) Freeze-dried cell extracts containing a
r substrate. Subsequent addition of a clinical sample triggers a colorimetric change that
ration of genetic systems ex vivo, enabling the use of synthetic gene platforms for precise

ologies for antimicrobial applications, Adv. Drug Deliv. Rev. (2016),
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inherent stochasticity in gene expression and relieve the metabolic
load imposed on the host microbe in sustaining circuit operation. Or-
thogonal integrases that can irreversibly flip DNA segments have been
engineered to encode genetic memory [132,133], and recombinase-
based systems have been used to record the magnitude and duration
of trigger exposure through regulated co-expression of recombinase
and retron elements that modify genomic DNA [134].

Improvements in the design of synthetic cellular memory have
led to the prospect of building reliable diagnostic probiotics for use
in vivo. Researchers have endowed E. coli with a synthetic memory cir-
cuit that enables probiotic tracking of antibiotic exposure from within
a mouse gut [135], and the human commensal microbe, Bacteroides
thetaiotamicron, has been instilled with integrase-based memory
constructs that can operate in vivo to track external stimuli [102].
These efforts demonstrate the budding feasibility of using engineered
probiotics to persistently monitor the gut microbiome.

Thus far, most synthetic probiotics have been proof-of-concept
models designed to respond to exogenous inducers rather than to
host factors indicative of a diseased state or pathogen presence [136].
Mining natural bacterial pathways can help develop more relevant
sensing capabilities, such as the detection of nitric oxide levels that are
indicative of gut inflammation [137]. To further expand the repertoire
of pathogen sensors, development of chimeric transcription factors
that connect a desired signal to a known transcriptional output may
be a productive strategy [138]. Such efforts have been successful in
engineering novel ligand-inducible expression systems that respond
to factors such as amino acids and light [139,140]. Expanding the ability
of engineered probiotics to sense their environment will greatly
improve their clinical relevance as diagnostic and therapeutic agents.

4. Discovery

In the pursuit of antimicrobial therapeutics and diagnostics, effort
must also be invested in identifying novel antimicrobial targets and
agents. Several synthetic biology platforms offer opportunities to
progress these goals by advancing technologies for the continued
study of virulent microorganisms.

4.1. Bacteriophage-based discovery tools

Although the advancement of phage-based therapeutics largely
stalled with the introduction of antibiotics, phages have long been
used as experimental platforms in many aspects of microbiological re-
search (Fig. 1D). Phage-based library screens, genomeengineering tech-
niques, and accelerated evolution platforms have been utilized for
microbial research and therapeutic development, and many synthetic
biology devices have been derived from natural phage biology [141].
These methods are increasingly common in research labs and have
been employed extensively to advance our understanding of infectious
microbes. In a unique application of phage genomics, Liu et al. described
a protocol formining a phage component library for novel antimicrobial
agents and therapeutic targets [142]. Demonstrated in Staphylococcus
aureus, this generalizable protocol can be employed in the study of
other phage/bacterial species pairs.

4.2. CRISPR/Cas for microbial screening and genome editing

As described in Section 2.1, CRISPR/Cas has become a ubiquitous
genome-editing tool within biological research. The CRISPR/Cas system
can be used to study the pathogenicity of clinically relevant intractable
pathogens due to its portability to a wide variety of organisms. In a re-
cent demonstration, Ghorbal et al. described the use of CRISPR/Cas in
the malaria parasite, Plasmodium falciparum [143]. By introducing
specific gene knockouts and single nucleotide substitutions, the group
was able to engineer an artemisinin-resistant Plasmodium strain to
validate the resistance causality of a previously implicated genetic
Please cite this article as: D. Braff, et al., Synthetic biology platform techn
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polymorphism. CRISPR/Cas has also enabled the generation of
luciferase-reporter Cryptosporidium parasites, opening the door to
rapid drug screening for this diarrheal pathogen that is one of the
leading causes of global child mortality [144]. CRISPR/Cas systems
have additionally been applied as high-throughput screening tools,
employing guide RNA libraries for wide-scale targeted mutagenesis
and gene knockout library generation in mammalian and yeast cell
lines, holding promise in pathogenic applications [145–148].
4.3. Synthetic microbial-screening platforms

Though initially developed for cellular engineering pursuits, several
devices used in synthetic biology have exhibited functionality as
effective screening platforms and discovery tools. Riboregulators are
RNA-based devices that confer tunable control of gene expression via
post-transcriptional regulation [21,150,151]. These mediators have
been used in conjunction with systems-level transcriptional profiling
to study microbial responses to the induced imbalance of a toxin-
antitoxin system [150], as well as to gain insight into the underlying
mechanisms of action of antibiotic treatments [152,153]. Green et al.
recently developed a second-generation riboregulator variant that
enables tunable regulation of endogenous RNA transcripts and can be
employed in additional microbial screens [22]. Another synthetic
biology platform that can be used for antimicrobial screening and target
evaluation is a recently developed tagged protein degradation system
[154]. Cameron et al. engineered inducible, selective protein degrada-
tion in E. coli and L. lactis through expression of an orthogonal protease
system. This platform has demonstrated utility in characterizing puta-
tive antibiotic adjuvant targets. For example, the induced degradation
of RecA (an endogenous DNA repair protein) led to a hypersensitive
phenotype in co-treatment with norfloxacin (a DNA-damage-inducing
antibiotic), confirming that a RecA inhibitor could function as a viable
norfloxacin adjuvant. Furthermore, the researchers generated an
Essential Protein Degradation (EPD) library in E. coli consisting of 238
degradation-tagged essential genes to promote broad use of this
platform in identifying new antimicrobial and adjuvant moieties.
4.4. Engineered microbial communities

Medical and scientific communities are increasingly mindful that
antibiotic resistance can be transferred between and among species
coexisting in a single population, and that broad-spectrum antibiotics
have negative consequences on the native microbiome [30,155].
However, the mechanisms underlying these processes are not entirely
understood. To this end, synthetic biologists have begun to engineermi-
crobial ecosystems that contribute to our understanding of microbiome
ecology and may lead to new therapeutic and vaccine strategies [30,
103,104,156]. Construction of synthetic predator-prey ecosystems in
which “predator” microbes were modified to induce and survive off of
the lysis of “prey” bacterial strains suggests that even simply-defined
inter-species relationships can lead to complex population dynamics
[157]. The emergence and stability of cooperative syntrophic exchange
have also been investigated by knocking out essential amino-acid
biosynthesis genes and analyzing the resulting population dynamics
in engineered co-dependent microbial consortia [158]. In alternate
schemes, CRISPR/Cas therapeutic technologies have been repurposed
to study the effects of selective manipulation of heterologous microbial
populations [71,72]. These targetedmethodologies can be used to study
interactions between species in vitro and can also be employed to po-
tentiate in vivo simulations of microbial niche clearing, a phenomenon
known to lead to acutely intractable infections such as C. difficile [4].
Additionally, sentinel prokaryotic systems may be engineered to moni-
tor environmental stimuli in vivo to investigate native interactions
within the microbiome [134,135].
ologies for antimicrobial applications, Adv. Drug Deliv. Rev. (2016),
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5. Conclusions

Advancing the next generation of antimicrobial therapies represents
a unique challenge and opportunity for the practical application of
synthetic biology tools. The microbial landscape is constantly changing
as bacteria evolve and respond to the treatments that are developed to
combat them. Synthetic biology rationale can aid in the rapid develop-
ment and tuning of new therapies that are required to keep pace with
these evolving adversaries. On the diagnostic front, new paper-based
technologies provide the means for low-cost, rapid testing in clinical
and/or resource-limited settings, as the first step in determining proper
antimicrobial treatment. Additional synthetic biology platforms, such as
phage-based technologies and attenuated Salmonella-based vaccines,
currently exist as commercially viable entities, while others, such as
synthetic probiotics, are rapidly improving and will soon join the ranks
in real-world deployment. Synthetic biology platform technologies are
well poised to contribute to the development of novel therapeutic,
diagnostic, and discovery modalities in a wide range of antimicrobial
applications.
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